
A Study of Modern

Linux API Usage
and Compatibility :

System Building: When You Become a Parent

Our experience from building a OS with Linux API support
(Graphene library OS [Eurosys’14]):

March

2011

Project started

September

2012

12 syscalls

supported

hello world

October

2013

131 syscalls

supported

apache

gcc

makefile

etc.

When can we claim

having a decent system

?

API compatibility is measured as all-or-nothing
(impractical for system developers)

What to Expect from This Paper:

• A method to quantify properties of API support:

• From importance of APIs to completeness of systems

• Practical, generalizable to other OSes

• A study on modern Linux APIs:

• Including different API types (e.g., syscalls, ioctl opcodes)

• How Linux users rely on Linux APIs

• An optimal path to build a Linux-compatible system

Chapter 1
How to Measure API Usage and

Compatibility

First Thought: # of APIs or Applications

EmmaOS

JohnnyOS

systems applicationsAPIs (ex: syscalls)

sys_ladder()

sys_lift()

sys_steer()

(support) (use)

support 2 APIs

or 2 apps

support 2 APIs

or 1 app crane-

truck.app

fire-

truck.app

lifter.app

Can we conclude who has better API compatibility?
(No, we cannot)

Taking Popularity into Consideration

systems applicationsAPIs

APIs are not equally popular

(e.g., sys_read > sys_sync)

Neither are applications

(e.g., Bash > CVS)

Static binary analysis Installation statistics
(e.g., Ubuntu popularity contest)

(support) (use)

users

(install)

New metrics to reflect both users and app

developers’ choices

We Need 2 Metrics for Building API Support

• Which APIs should I implement first?

API Importance
(API usage)

• What is the progress of API support in my system?

Weighted Completeness
(system’s API compatibility)

(use)

A Metric for APIs: API Importance

cranetruck.app
(installed by

60% of users)

firetruck.app
(installed by

80% of users)

sys_steer()

Probability that a random user installs

any applications using the API

≤ 1- (1-60%)(1-80%) = 92%

= Pr []crane-truck.app is installed

or fire-truck.app is installed

API importance =

(upper bound)

If the API is missing,

how many users will complain?

(Example: 5 apps in average)

A Metric for Systems: Weighted Completeness

(support)

Fraction of installed applications to be supported

by the system, for a random user

weighted completeness =

≈ (0.6+0.8) ÷ 5 = 28%

≈
E []# cranetruck.app installed

+ # firetruck.app installed

E []# applications installed
(installed by

60% of users)

(installed by

80% of users)

If a user switches to the new system,

how many apps will still work?

Quick Summary

• API Importance (for each API):
% of users that install any apps using the APIs

• Weighted Completeness (for the whole system):
% of a user’s installed apps supported by the system

Chapter 2
A Study of Linux APIs

and How It Can Help API Support

A Large-Scale Linux API Study

• Applications Sample: Ubuntu 15.04 official repositories

66,275 ELF binaries

in 22,459 amd64 packages
EXEs linked

with LIBs
48%shared LIBs 52%

• Installation statistics: Popularity Contest

2.7 million installations (http://popcon.ubuntu.com)

0.2 million installations (http://popcon.debian.org)

A large, representative sample to draw meaningful

observations

Tons that You Can Find in the Study

• For researchers: (in the paper)

• Observations to motivate ideas

• For maintainers: (in the paper)

• Evidences to justify or guide decisions

• For builders:

• Rationale for prioritizing APIs to implement

• Quantifying system building goals

0%

50%

100%

0

A
P

I
Im

p
o

rt
a

n
c
e

N-most important system calls
(from the most important to the least important)

Prioritizing Linux System Calls

200 225 250 275 300

10%
257th

302nd

224th

45 used by

< 10%
Ex: ustat,
tee, getcpu

6 completely

unused
Ex:

get_robust_list
mq_notify
move_pages

308 in

Linux 3.19()

224 are used

by at least one app

for each user
Ex: read, exit, clone

Maintainers:

APIs in heavy use

Builders:

ranking of APIs

Even if importance is ~100%, ranking is meaningful

for prioritizing APIs to support

0%

50%

100%

0

A
P

I
Im

p
o

rt
a

n
c
e

N-most important system calls
(from the most important to the least important)

200 225 250 275 300

Using API Importance As Heuristic

 Both round up to 100%, but still different

Higher-ranking APIs are likely to support more

applications for a user

0
100
200
300
400
500
600

0 50 100 150#
 p

a
c

k
a

g
e

s
 u

s
in

g

th
e

 s
y
s

c
a

ll

N-most important syscalls

Top 3000 packages

Top 2000 packages

Top 1000 packages

First 40 syscalls:

used by every packages

(must implement first)

Last 75 syscalls:

used by very few packages
(e.g., setdomainname() by

hostname)

Ideal for prioritizing APIs to maximize weighted

completeness

sys_sync (1 - 10
-8

)sys_read (1 - 10
-383

)

Evaluating the System while Building It

• Goal: maximize weighted completeness

• Approach: implement the most important APIs (syscalls) first

0%

50%

100%

0 50 100 150 200 250

W
e
ig

h
te

d

C
o

m
p

le
te

n
e
s

s

implemented syscalls

40
must-have

syscalls

app: time

81 (+41)

most important

syscalls

10% complete

app: perl

145 (+64)

most important

syscalls

50% complete

app: vnc-server

202 (+63)

most important syscalls

90% complete

app: chromium

Graphene
145 syscall

21% complete

FreeBSD

Linux layer
225 syscall

62% complete

More nearly optimal path than

only relying on developers’ intuition

More in the Paper

• More API types:

• Opcodes of vectored syscalls (e.g., ioctl, fcntl, prctl)

• Pseudo-files (e.g., /proc, /dev, /sys)

• Library functions (e.g., GNU library C)

• More systems: e.g., L4Linux, User-Mode-Linux, libc variants

• Hints for Maintainers:

• When is the timing of deprecation?

• Where is the sweet spot of limiting APIs (e.g., for security)?

• What is app developers’ preference?

Tool, Data and Code Available Soon!

www.oscar.cs.stonybrook.edu/api-compat-study

Data Set (2.6 M records)

for Download

Online

Evaluation Tool

Conclusions

• An API study that reassuringly answers the questions of
system developers, from planning stage to release.

• Encourage builders with better methods to strategize/evaluate.

• Motivate researchers and justify maintainers’ decisions.

• Lessons for evaluating all-or-nothing properties

Analysis techniques (e.g., binary analysis)

+ User studies (e.g., application popularity)

www.oscar.cs.stonybrook.edu/api-compat-study

Chia-Che Tsai
chitsai@cs.stonybrook.edu

Tool / Data / Code:

