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Decentralized Information Flow Control (DIFC) is a promising model for writing programs with powerful,
end-to-end security guarantees. Current DIFC systems that run on commodity hardware can be broadly
categorized into two types: language-level and operating system-level DIFC. Language solutions provide
no guarantees against security violations on system resources such as files and sockets. Operating system
solutions mediate accesses to system resources but are either inefficient or imprecise at monitoring the
flow of information through fine-grained program data structures. This article describes Laminar, the first
system to implement DIFC using a unified set of abstractions for OS resources and heap-allocated objects.
Programmers express security policies by labeling data with secrecy and integrity labels and access the
labeled data in security methods. Laminar enforces the security policies specified by the labels at runtime.
Laminar is implemented using a modified Java virtual machine and a new Linux security module. This article
shows that security methods ease incremental deployment and limit dynamic security checks by retrofitting
DIFC policies on four application case studies. Replacing the applications’ ad hoc security policies changes
less than 10% of the code and incurs performance overheads from 5% to 56%. Compared to prior DIFC
systems, Laminar supports a more general class of multithreaded DIFC programs efficiently and integrates
language and OS abstractions.
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1. INTRODUCTION

As computer systems support more aspects of modern life, from finance to health
care to energy, the security of these systems becomes increasingly important. Current
security policies and enforcement mechanisms are typically sprinkled throughout an
application, making security policies difficult to express, change, and audit. Operating
system security abstractions, such as file permissions and user IDs, are too coarse
to express many desirable policies, such as protecting a user’s financial data from a
program downloaded from the Internet.

Furthermore, poor integration of Programming Language (PL) constructs and Oper-
ating System (OS) security mechanisms complicates the expression and enforcement
of security policies. For example, a policy against sending a user’s credit card number
on the network should be enforced whether the number originates from a file or an
application data structure. In current systems, the OS governs the security of files,
and application-specific logic governs the security of data structures; because these
mechanisms are completely distinct, developers must understand both mechanisms
and ensure that they interoperate correctly. This article describes Laminar, which
integrates PL and OS security mechanisms under a common set of programmer ab-
stractions and uniformly enforces programmer-specified security policies at all levels
of the software stack.

Laminar builds on the Decentralized Label Model (DLM) [Myers and Liskov 1997],
which expresses more powerful, sophisticated, and intuitive security policies than tra-
ditional security models. The enforcement of DLM restrictions is called Decentralized
Information Flow Control (DIFC). DIFC is more expressive than traditional access
control. For instance, traditional access control models are all-or-nothing; once an ap-
plication has the right to read a file, it can do anything with that file’s data. In contrast,
a DIFC policy may give an application the right to read a file and simultaneously for-
bid it to broadcast the contents of the file over an unsecured network channel. A DIFC
implementation dynamically or statically enforces user-specified security policies by
tracking information flow throughout the system.

In the decentralized label model, users create tags, which represent secrecy or in-
tegrity concerns. A set of tags is called a label, and all data and application threads
have an associated secrecy label and an integrity label. The system restricts the flow
of information according to these labels. Secrecy guarantees prevent sensitive infor-
mation from escaping the system (no illegal reads),1 and integrity guarantees prevent
external information from corrupting the system (no illegal writes).

As an example, suppose Alice and Bob want to schedule a meeting without disclosing
other appointments on their calendars. In the DLM model, Alice and Bob each place
a tag in the secrecy label on their calendar files. Alice and Bob can give the calendar
application permission to read these files but only if the application taints its own
secrecy label with the secrecy tags of each file. A tainted application thread may no
longer write to less-secret outputs, such as the terminal or the network. In our example,
the tainted thread may read each calendar file and select an agreeable meeting time,
but the thread can only write output to a file or data structure labeled with both Alice’s
and Bob’s secrecy tags. In order for the calendar application to output a nonsecret
meeting time, Alice and Bob must provide a declassifier with the capability of removing
their tags from a datum’s secrecy label. The declassifier is a piece of code responsible
for checking that its output conforms to a secrecy policy associated with a tag; the
declassifier may write acceptable data to a less-secret output. In the calendar example,
Alice and Bob might both provide declassifiers; each declassifier can generate output

1The literature uses both confidentiality and secrecy for this guarantee. We use S for secrecy, I for integrity,
and C for capabilities to avoid ambiguity.
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without that user’s tag in the secrecy label. For instance, Bob’s declassifier might read
the labeled meeting time and check that the output is simply a date and does not include
mention of his upcoming vacation to Las Vegas. Note that DIFC exists in addition to
traditional access control; for example, a web server would not be allowed to open either
calendar file due to standard OS-level permission checks.

Similarly, Alice may use an integrity label on her calendar file to ensure that any
updates to the file respect certain invariants. Suppose Alice’s calendar is stored as a
chronologically sorted list of appointments. Untrusted code that adds appointments to
Alice’s calendar might serialize her appointments into the on-disk format and store the
pending data in a memory buffer. Alice could then run this buffer through an endorser,
which ensures that the pending data write meets the specifications of her calendar for-
mat, such as checking that all appointments are sorted chronologically. Just as secrecy
labels can be removed from the output of a computation by a declassifier, an endorser is
trusted with the capability to add a tag to the integrity label of inputs that it validates.
Once the endorser has validated that its input is trustworthy, the endorser adds Alice’s
integrity tag to its integrity label and writes a new version of her calendar file.

DIFC provides two key advantages: precise rules for the legal propagation of data
through an application and the ability to localize security policy decisions. In the
calendar example, the secrecy labels ensure that any program that can read the data
cannot leak the data, whether accidentally or intentionally. The label is tied to the data,
and the label modulates how data can flow through threads and data containers (e.g.,
files and data structures). The decision to declassify data is localized to small pieces of
code that programmers may closely audit. The result is a system where security policies
are easier to express, maintain, and modify than with traditional security models.

Combining the Strengths of Language and Operating System Enforcement. Laminar
is a new DIFC system design that features a common security abstraction and labeling
scheme for program objects and OS resources such as files and sockets. The Java
Virtual Machine (VM) and OS coordinate to comprehensively enforce rules within an
application, among applications, and through OS resources.

Prior DIFC systems are implemented at the language level [Chandra and Franz
2007; Myers and Liskov 1997; Myers et al. 2001; Nair et al. 2008] in the operating
system [Krohn et al. 2007; Vandebogart et al. 2007; Zeldovich et al. 2006], or in the
architecture [Tiwari et al. 2009a; Vachharajani et al. 2004; Zeldovich et al. 2008].
Each approach has strengths and limitations. Language-based DIFC systems can track
information flow through data structures within a program but have little visibility into
OS-managed resources, such as files and pipes. In contrast, OS-based DIFC systems
track labels at the coarse granularity of pages or a process’s virtual address space
rather than on individual data structures. Information flow rules are enforced on OS-
level abstractions, such as sockets and files. For many simple applications, these coarse-
grained rules simplify DIFC adoption. However, OS protection mechanisms are not a
good fit for managing information flow on data structures within an application because
the OS’s primary tool is page-level protections. Although an application developer could
group objects with similar labels on similarly labeled pages, this undermines developer
productivity and application efficiency. Thus, we believe that coordinating language and
OS mechanisms will maximize security and programmability.

We limit the scope of this article to DIFC implementations on commodity hardware.
Architecture-based solutions track data labels on various low-level hardware features,
such as CPU registers, memory, cache lines, or even gates, but require similar coordi-
nation with trusted software to manage the labels.

Language-based DIFC systems can be further categorized by how they enforce DIFC
rules: static analysis [Myers and Liskov 1997; Myers et al. 2001], dynamic analysis
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[Shroff et al. 2007], or a hybrid [Chandra and Franz 2007; Nair et al. 2008]. Static
systems generally introduce a type system that is expressive and powerful but difficult
to program or retrofit onto existing code. Because static systems do most security anal-
ysis at compile time, they introduce little runtime overhead; static systems may insert
dynamic checks for properties that cannot be established at compile time. Dynamic sys-
tems generally enforce information flow rules by mediating every operation at runtime
but with relatively high performance overheads. Purely dynamic systems also struggle
to regulate implicit flows (discussed further in Section 6.4) and can ultimately reject
safe programs or leak sensitive data [Russo and Sabelfeld 2010].

Most language-level systems are actually a hybrid of static and dynamic analysis.
Each design strikes a balance among changes to the programming language to facili-
tate static analysis, runtime overheads, and security guarantees. The Laminar design
restricts the programming model slightly, ensuring that all security properties can be
checked dynamically. Laminar does employ intraprocedural static analysis at Just-in-
Time (JIT) compilation time to optimize security checks.

Limiting the Scope of Analysis. A second key contribution of Laminar is the design of
a language-level feature, called a security method, which strikes a unique balance be-
tween programmability and efficiency. Developers place all security-sensitive program
logic in security methods. The Laminar VM requires that all operations on labeled data
or system resources occur within security methods, according to developer-specified
policies. In addition, all methods dynamically invoked by a security method, directly or
transitively, are security methods. Code that attempts to manipulate security-sensitive
data outside of a security method will fail.

Laminar enforces stringent requirements on transitions to and from security meth-
ods, restricting both control and data flow. These restrictions are enforced dynamically
by VM instrumentation. Security methods reduce the overhead of dynamic security
checks because only code within security methods requires complex DIFC checks.

Security methods also minimize the code changes required to adopt DIFC. In our
case studies, changes to adopt security methods account for 10% or fewer of the total
lines of code, which suggests that pervasive program modifications are unnecessary to
use DIFC with Laminar.

Contributions. The contributions of this article are as follows:

(1) We present the design and implementation of Laminar, the first system to unify
PL and OS mechanisms for enforcing DIFC. Laminar features a novel division of
responsibilities between the VM and OS.

(2) We introduce security methods, an intuitive security primitive that reduces the
work required to convert an application to use DIFC, makes code auditing easier,
and makes the DIFC implementation simpler and more efficient.

(3) We present the design and implementation of Laminar in the Linux OS and Jikes
RVM, a Java research VM.

(4) We evaluate four case studies that retrofit security policies onto existing code.
These case studies require modification of less than 10% of the total code base and
incur overheads from Laminar ranging from 5% to 56%.

(5) Based on our experiences, we substantially modified the conference publication
that introduced this research [Roy et al. 2009]. We replace security regions with
security methods to simplify our implementation. We use only dynamic analy-
sis to simplify the enforcement security policies. We identify and fix a covert
channel bug arising from the interaction of termination and concurrency. Fur-
thermore, we improve the programming model for initializing and using security
labels.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.



Practical Fine-Grained Information Flow Control Using Laminar 4:5

(6) We describe strengths and limitations of the Laminar model, its open challenges,
and potential solutions. In particular, Laminar is one of the few DIFC systems to
attempt multithreading support, which is prone to high-bandwidth timing chan-
nels. Laminar cannot prevent all of these timing channels, but we outline how
subsequent work by others [Askarov et al. 2010; Askarov and Myers 2012; Zhang
et al. 2011] could strengthen the Laminar threading model.

Initial results suggest that integrating PL and OS DIFC enforcement is practical and
incurs low overheads. Our experience with Laminar shows that it prevents some ter-
mination information channels, but it cannot yet make guarantees on some timing
channels. We believe restrictions on the programming model within security methods
can solve some of these problems, but this research leaves open the definition of such
a formalism and accompanying proofs. Laminar provides a first step for application
developers to write expressive abstractions with fine-grained, powerful, and useful
security policies that span program data structures and system resources.

2. DIFC MODEL

This section describes how the DIFC model specifies and enforces safe information
flows and how Laminar embodies the DIFC model. All DIFC systems denote the sen-
sitivity of information and the privileges of the participating users, as well as describe
application-specific policies that map between users and sensitive information. The
security policy is defined in terms of principals that read and write data in the system.
Examples of principals in DIFC systems are users [Myers et al. 2001], processes [Krohn
et al. 2007], and kernel threads [Zeldovich et al. 2006]. Principals in Laminar are ker-
nel threads, which ultimately work on behalf of human users or other application-level
actors.

2.1. DIFC Abstractions

Standard DIFC security abstractions include tags, labels, and capabilities. Tags are
short, arbitrary tokens drawn from a large universe of possible values (T ) [Krohn et al.
2007]. Programmers use tags to denote a unique secrecy or integrity property, but
a tag has no inherent meaning. Programmers may create tags dynamically and may
persist tags beyond execution of an application. A set of tags is called a label. In a DIFC
system, any principal can create a new tag for secrecy or integrity. For example, a web
application might create one secrecy tag for its user database and a separate secrecy tag
for each user’s data. The secrecy tag on the user database will prevent authentication
information from leaking to the network. The tags on user data will prevent a malicious
user from writing another user’s secret data to an untrusted network connection.

Principals assign labels to data objects. Data objects include program data structures
(e.g., individual objects, arrays, lists, and hash tables) and system resources (e.g., files
and sockets). Previous OS-based systems limit principals to the granularity of a process
or support threads by enforcing DIFC rules at the granularity of a page. Laminar is
the first to support threads as principals and enforce DIFC at object granularity.

Each data object and principal x has two labels, Sx for secrecy and Ix for integrity.
A tag t in the secrecy label Sx of a data object denotes that it may contain information
private to principals with tag t. Similarly, a tag u in Ix indicates that the owner of in-
tegrity tag uendorses the data. Data integrity is a guarantee that data exist in the same
state as when they were endorsed by a principal. For example, if Microsoft endorses a
data file, then a user can choose to trust the file’s contents if she trusts Microsoft. With
integrity enforcement, only Microsoft may modify the integrity-labeled file. However,
Microsoft may choose to remove the integrity label, or some other application may write
the file, but without the Microsoft integrity label. In either case, the file’s consumer will
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no longer trust the contents as coming from Microsoft. In general, a principal’s labels
restrict the interaction that the principal has with other principals and data objects.

A partial ordering of labels imposed by the subset relation forms a lattice [Denning
1976]. Secrecy and integrity may be treated separately, as asymmetric duals. The
bottom of the secrecy lattice is the least restricted label (public): Any principal can
read it. The bottom of the integrity lattice is the most secure (trusted): All principals
can trust it. Adding secrecy tags to a label restricts the use of the data, moving higher in
the lattice. The most restricted data at the top of the secrecy lattice includes all secrecy
tags. The bottom of the integrity lattice is the most secure (trusted) and includes all
integrity tags. Removing integrity tags moves the label higher in the lattice and the
data are less trusted. The top of the integrity lattice has no integrity tags—no principal
endorses it.

Some other DIFC explanations put an empty integrity label at the bottom of the
lattice so that adding tags moves up the lattice, as opposed to the preceding description
that places the label with all integrity tags at the bottom, so that moving up the lattice
adds restrictions. Both representations are functionally equivalent. For clarity, this
article generally discusses the secrecy and integrity labels separately, but occassionally
some explanations treat principals and data as having a single label and capability set
for ease of exposition.

Because Laminar’s threat model includes code that may be contributed to the appli-
cation by an adversary, all application data are assigned an empty label (public and
untrusted) by default. Data from the JVM itself are public and trusted. The program-
mer need not label every data structure, nor does the OS need to label every file in the
file system. Code that executes with a nonempty integrity label must sanitize untrusted
data before a read. Default empty labels make Laminar easier to deploy incrementally,
but introduce some asymmetry in the treatment of secrecy and integrity tags.

A principal may change the label of a data object or principal if and only if the
principal has the appropriate capabilities, which generalize ownership of tags [Myers
and Liskov 1997]. A principal p has a capability set Cp that defines whether the
principal has the privilege to add or remove a tag. For each tag t, let t+ and t− denote
the capabilities to add and remove the tag t.

If tag t is used for secrecy, a principal with the capability t+ may classify data
with secrecy tag t. Classification raises data to a higher secrecy level. Given the t−
capability, a principal may declassify these data. Declassification lowers the secrecy
level. Principals may add t to their secrecy label if they have the t+ capability. If the
principal adds t, then we call it tainted with the tag t. A principal taints itself when it
wants to read secret data. To communicate with unlabeled devices and files, a tainted
principal must use the t− capability to untaint itself and to declassify the data it wants
to write. Note that DIFC capabilities are not pointers with access control information,
which is how they are commonly defined in capability-based operating systems [Levy
1984; Shapiro et al. 1999].

DIFC handles integrity similarly to secrecy. A principal with integrity tag t is claim-
ing to represent a certain level of integrity; the system prevents the principal from
reading data with a lower integrity label, which could undermine the integrity of the
computation. Given the t+ capability, a principal may endorse data with integrity tag
t, generally after validating that the input data meet some requirements. Given the t−
capability, a principal may drop the endorsement and read untrusted data. For exam-
ple, code and data signed by a software vendor could run with that vendor’s integrity
tag. If the program wants to load an unlabeled, third-party extension, the principal
drops the endorsement of the tag.

Note that the capability set Cp is defined on tags. A tag can be assigned to a secrecy
or integrity label. In practice, a tag is rarely used for both purposes. C−

p is the set of
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tags that principal p may declassify (drop endorsements), and C+
p is the set of tags that

p may classify (endorse). Principals and data objects have both a secrecy and integrity
label; a data object with secrecy label s and integrity label i is written: 〈S(s), I(i)〉. An
empty label set is written: 〈S(), I()〉. The capability set of a principal that can add both
s and i but can drop only i is written: 〈C(s+, i+, i−)〉.
2.2. Restricting Information Flow

Programs implement policies to control access and propagation of data by using labels
to limit the interaction among principals and data objects. Information flow is defined
in terms of data moving from a source x to a destination y, at least one of which is
a principal. For example, principal x writing to file y, principal x sending a message
to principal y, and principal y reading a file x are all information flows from x to y. If
principal x writes to a file y, then we say information flows from source x to destination
y. Laminar enforces the following information flow rules for x to y:

Secrecy rule. Bell and LaPadula introduced the simple security property and the
*-property for secrecy [Bell and LaPadula 1973]. The simple security property states
that no principal may read data at a higher level (no read up), and the *-property
states that a principal may not write data to a lower level (no write down). Expressed
formally, information flow from x to y preserves secrecy if:

Sx ⊆ Sy

Note that x or y may make a flow feasible by using their capabilities to explicitly drop
or add a label. For example, x may make a flow feasible by removing a tag t from its
label Sx if it has the declassification capability for t (i.e., t− ∈ C−

x ). Similarly, y may use
its capabilities in C+

y to extend its secrecy label and receive information.

Integrity rule. The integrity rule constrains who can alter information and restricts
reads from lower integrity (no read down) and writes to higher integrity (no write up)
[Biba 1977]. Laminar enforces the following rule:

Iy ⊆ Ix

Intuitively, the integrity label of x should be at least as strong as destination y. Just
like the secrecy rule, x may make a flow feasible by endorsing information sent to a
higher integrity destination, which is allowed if x has the appropriate capability in C+

x .
Similarly, y may need to reduce its integrity level, using C−

y , to receive information
from a lower integrity source.

Label changes. According to the previous two rules, a principal can enable informa-
tion flow by using its current capabilities to drop or add tags from its label. Laminar
requires that the principal must explicitly change its current labels. Zeldovich et al.
show that automatic, or implicit, label changes can form a covert storage channel
[Zeldovich et al. 2006].

In Laminar, a principal p may change its label from L1 to L2 if it has the capability
to add tags present in L2 but not in L1, and can drop the tags that are in L1 but not in
L2. This is formally stated as:

(L2 − L1) ⊆ C+
p and (L1 − L2) ⊆ C−

p .

2.3. Calendar Example

Again, consider scheduling a meeting between Bob and Alice using a calendar server
that is not administered by either Alice or Bob. Alice’s calendar file has a secrecy tag,
a, and integrity tag i; Bob’s calendar file has a secrecy tag, b.
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Ensuring secrecy. Focusing on Alice, she gives a+ to the scheduling server to let it
read her secret calendar file, which has label 〈S(a)〉. A thread in the server uses the
a+ capability to start a security method with secrecy tag a that reads Alice’s calendar
file. Once the server’s thread has the label 〈S(a)〉, it can no longer return to the empty
label because it lacks the declassification capability, a−. As a result, the server thread
can read Alice’s secret file, but it can never write to an unlabeled device like the disk,
network, or display. If the server thread creates a new file, it must have label 〈S(a)〉,
which is unreadable to its other threads. Before the server thread can communicate
information derived from Alice’s secret file to another thread, the other thread must
add the a tag, and it also becomes unable to write to unlabeled channels.

Ensuring integrity. Alice also places an integrity label on her calendar file, which
is propagated to the heap data structures representing her calendar. In order for any
thread to update Alice’s calendar, the thread must add the i integrity tag to its label.
In general, the capability to add this tag would be restricted to code that is trusted to
check that inputs or updates uphold application invariants. In this example, much of
the calendar code may run with an empty integrity label, but once a meeting request
is ready to be added to Alice’s calendar, the meeting request is checked by Alice’s
endorser. If the checks pass, Alice’s endorser adds the i tag to the meeting request data
structure. The code that writes the updated calendar to disk must also run with the i
tag, preventing data from untrusted heap objects from inadvertently being written to
the calendar file.

Sharing secrets with trusted partners. Alice and Bob collaborate to schedule a meeting
while both retain fine-grained control over what information is exposed. After the
scheduler has read Alice’s and Bob’s calendar files, the output data are labeled with the
a and b secrecy tags. Alice’s module has access to her a− capability, so the server calls
her code, which validates that the output does not disclose unintended information
to Bob. Alice’s module then removes the a tag from the output data, publishing the
meeting time to Bob. Alice controls which of her data flow out of the scheduler. Bob
does the same, and the scheduler can communicate with both of them and coordinate
their possible meeting times.

Discussion. In this example, Alice specifies a declassifier as a small code module
that can be loaded into a larger server application, which can be completely ignorant
of DIFC and requires no modifications to work with Alice’s DIFC-aware module. For
previous DIFC systems, this example is more cumbersome. OS-based DIFC systems
require the declassifier to run as a separate process. Language-based DIFC systems re-
quire programmers to annotate the entire application. By integrating OS and language
techniques, Laminar simplifies incremental DIFC adoption.

2.4. Goals and Threat Model

This subsection describes our threat model and its rationale at a high level. We revisit
these security properties in Section 6, after describing our system design and imple-
mentation. Section 10 surveys related work in more detail, but here we summarize key
categories of DIFC systems and challenges in DIFC adoption. DIFC systems can be
roughly categorized by how they enforce flows: static analysis, dynamic language-level
analysis, or OS-level enforcement.

Incremental Adoption. A key design goal of Laminar is facilitating incremental adop-
tion of DIFC on a large body of code. The ease with which a programmer can adopt
DIFC is an issue for most DIFC designs. DIFC based on static analysis often re-
quires substantial annotations of the program with a new type system. OS-based DIFC
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requires substantial reorganization of the application code in order to segregate data
pages and code by label. It is unclear whether a language-level dynamic analysis is
any easier to adopt. Although there has been some work in this area, it has generally
enforced only simple policies on outputs [Chandra and Franz 2007] or had problems
with “label creep,” which requires error-prone, manual analysis by the programmer
[Nair et al. 2008].

The insight underlying Laminar’s security-method-based design is that many appli-
cations already handle sensitive data only in relatively small portions of their code.
For instance, web server authentication code is generally small relative to all of the
code that generates and transmits web content. Thus, Laminar is designed so that the
programmer audits only these relatively small portions of preexisting code for correct
handling of sensitive data. Sensitive code is placed in security methods, and the system
dynamically checks that all information flows according to the restrictions imposed by
the developer and end users.

Laminar enforces DIFC rules using a combination of dynamic analysis and pro-
grammer annotations (i.e., security methods). Compared to other dynamic or hybrid
language-level systems, Laminar is generally more efficient than previous systems be-
cause of careful implementation choices and limited scope of analysis. As discussed
earlier, all DIFC systems require some measure of work to adopt, and our experience
is that security methods minimize the effort without sacrificing functionality.

Integration of OS and PL Abstractions. Laminar integrates OS and PL DIFC abstrac-
tions to implement uniform policies and label management across resources. Existing
systems cannot easily integrate these abstractions. For instance, a PL system might
enforce all-or-nothing policies about output or might make educated guesses about
information flow through OS abstractions, but it cannot ensure that these rules are
followed once data leaves the application.

Threading. A key aspect of incremental deployability is tracking information flow
through a program, including with multiple, concurrent threads. OS systems medi-
ate multiprocess concurrency through explicit channels and at page granularity. In
practice, these systems cannot track fine-grained information flow through traditional
thread packages without major modifications to the application. PL systems have gen-
erally avoided multithreading because it increases the risks of covert channels. Lami-
nar does permit multithreading, but cannot prevent all timing channels attacks. This
article identifies some threats and points to solutions developed after the initial publi-
cation of this work [Roy et al. 2009] that could be integrated into security methods to
mitigate these channels.

Threat Model. In a DIFC system, the primary concern is limiting the ability of
one principal to access another principal’s data. So, in our threat model, the attacker
may have contributed code to the application and is executing as principal (thread)
A. Laminar does not allow principal A to explicitly read or write another principal B’s
data (e.g., by explicit assignment in the program) without acquiring appropriate secrecy
and integrity labels. Any other user controls access to her data by controlling which
principals she gives the capabilities to add and remove tags associated with her data.

Limitations. Like most DIFC systems, the Laminar VM and OS mediate all explicit
assignments of labeled data, as described in Sections 4 and 5. Laminar prevents im-
plicit information flows by restricting the visibility that untrusted code has into the
control flow of a security method, including restrictions on input and output variables
(discussed further in Section 6.4).

Eliminating all timing, termination, and other covert channels are open problems
[Denning and Denning 1977; Lampson 1973] and beyond the scope of this article.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.



4:10 D. E. Porter et al.

In particular, it is well established that preventing all these channels on a general-
purpose programming model is tantamount to solving the halting problem [Denning
and Denning 1977]. In order to eliminate information leaks due to unbounded execu-
tion, more recent work has investigated highly restricted programming models (e.g.,
without unbounded loops [Tiwari et al. 2009b]) or bounding the execution time of code
that manipulates sensitive data [Tiwari et al. 2009a].

To facilitate incremental adoption, Laminar places capabilities in threads, rather
than statically mapping them to functions. The underlying tradeoff is that the program-
mer can more easily invoke standard libraries from a security method. For example,
programmers may therefore manipulate secure objects using standard implementa-
tions of arrays, lists, and sets. Code invoked from a security method executes as if it were
in the security method. This choice introduces some risk for a confused deputy prob-
lem and requires trusting the caller of a security method to manage capabilities. The
Laminar design mitigates the risk of capability management errors by requiring that
all endorsers and declassifiers be declared final and that non-endorser/declassifier
security methods do not accept capabilities as arguments. These issues are discussed
further in Section 6.6.

Two key innovations of Laminar are support for multiple threads and the ability of
a single thread to transition between different trust levels—facilitating incremental
adoption but also introducing new opportunities for covert channels based on the timing
of these transitions. Section 6 describes the new classes of timing and termination
channels that these features could introduce and how Laminar mitigates them. To
summarize, Laminar restricts the ability to create a channel based on control flow
within a security method by requiring a single exit point from a security method
and carefully mediating any OS- or VM-level storage channel, such as the thread’s
capabilities. The article also discusses how more recent work, such as predictive timing
models [Askarov et al. 2010], could be applied to the Laminar prototype to further
reduce covert channels, especially through thread synchronization. These issues are
discussed further in Section 6.

3. DESIGN

This section describes the Laminar programming model and how Laminar enforces
DIFC in an enhanced VM and OS.

3.1. Overview

Figure 1 illustrates the Laminar architecture. The OS kernel reference monitor medi-
ates accesses to system resources. The VM enforces DIFC rules within the application’s
address space. Only the OS kernel and VM are in the Laminar trusted computing base.
The OS kernel and VM trust each other as well.

The Laminar OS kernel extends a standard OS kernel with a Laminar security mod-
ule for information flow control. Users and programmers invoke the Laminar kernel
security APIs to create tags, store capabilities for their tags, and label their data in
files. Users launch processes with a subset of their tags and capabilities. The Laminar
OS kernel governs information flows through all standard kernel interfaces, including
through devices, files, pipes, and sockets. DIFC rules are enforced by the kernel on
all threads, whether the threads are of the same or different processes. Resources and
principals without an explicit label have empty secrecy and integrity labels, facilitating
incremental adoption. Our prototype uses the Linux Security Modules [Wright et al.
2002] framework, although the design could be extended to any OS that provides simi-
lar hooks to an in-kernel reference monitor to label kernel objects and mediate system
calls that could create an information flow.
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Fig. 1. Design of Laminar. An OS kernel reference monitor and VM reference monitor enforce information
flow control. All data is labeled, including objects in the VM, as well as OS abstractions, such as files and
sockets. Objects without explicit labels default to empty secrecy (public) and integrity (untrusted) labels.
Threads have capabilities and an empty label. A thread enters a Security Method (SM) to acquire a nonempty
label. A security method may optionally receive capabilities from the calling thread.

To regulate information flows within an application, Laminar extends the runtime
system of a standard Java VM. By default, the Laminar OS kernel requires all threads
within a process to have the same secrecy and integrity labels. The OS relaxes this
restriction for threads running on the trusted Laminar VM. The Laminar VM binary is
labeled with a special TCB integrity tag, which indicates to the OS that this application
is trusted to control information flows within its address space. Although the kernel
trusts the Laminar VM to regulate flows within the address space, the kernel still
checks all accesses to system resources.

The Laminar VM regulates information flow between heap objects within a thread
and between threads of the same process via these objects. The Laminar VM inserts
dynamic DIFC checks to regulate DIFC flows.

The key abstraction for manipulating labeled data is the security method. Program-
mers explicitly declare security methods. In addition, any method invoked directly or
transitively from a declared security method is implicitly defined as a security method.
Outside of a security method, a thread has empty secrecy and integrity labels and may
only read or write data with empty secrecy and integrity labels. The VM terminates the
program if it attempts to read or write any labeled data outside a security method. If a
thread has the capability to add a tag to its secrecy or integrity labels, the thread may
change its labels by entering a security method. Within a security method, a thread
may read or write data with nonempty labels as long as the reads and writes constitute
a legal information flow according to the capabilities specified by the parameters. A
thread typically runs with a subset of the user’s capabilities, and a security method
specifies a subset of the thread’s capabilities. Security methods may nest. Each security
method may only have a subset of the parent security method’s capabilities and may
only change its labels as permitted by the parent’s capabilities.

For example, Alice writes a program in Java with the Laminar programming model
and uses the Laminar API (see next paragraphs and Table I). Alice compiles the code
using a standard, untrusted bytecode generator such as javac. The Laminar JIT com-
piler and VM execute the bytecode, and the Laminar OS kernel executes the Laminar
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Table I. Laminar API
These functions manipulate labels and capabilities. LabelType denotes whether a request is for a secrecy label
or integrity label. CapType denotes plus, minus, or both capabilities for a tag. The getCurrentLabel and copyAnd-
Label functions may be invoked inside of a security method, but tags and capabilities may only be created and
destroyed outside of a security method, using createAndAddCapability and removeCapability, respectively.
The API has wrapper functions (not shown) for the new Laminar system calls. Label stores a set of secrecy or
integrity tags (Section 5.1).

Function Description
Label getCurrentLabel(LabelType t) Return the current secrecy or integrity label of the

security method as an opaque object. Label objects
cannot be enumerated.

Object copyAndLabel(Object o, Label S,
Label I)

Return a copy of the object o with new secrecy label S
and integrity label I.

CapSet getCurrentCapabilities() Return the current capability set of the thread as an
opaque object.

Label createAndAddCapability() Create a new tag and add capabilities to the current
thread. Must be used outside of a security method.

void removeCapability(CapType c, Label l) Drop the capabilities listed in c (plus and/or minus)
associated with the tags in l from the current thread.
Must be used outside of a security method.

VM. During execution, the program labels data with security and integrity tags that it
obtains from the kernel API. The OS kernel and VM thus use the same tag namespace
for the system resources and objects. For example, the application reads data from a
labeled file into a data structure with the same labels. The Laminar VM ensures that
any accesses or modifications to labeled data follow the DIFC rules and occur in a
security method, a labeled method specified by the programmer.

Restricting security policies to security methods makes it easier to add security
policies to existing programs. Furthermore, auditing security methods will generally be
easier than auditing the entire program. These features should facilitate incremental
deployment of Laminar in existing systems. Security methods also decrease the cost of
performing dynamic security checks in the Laminar runtime.

Laminar does not track information flows through local variables. Because labeled
data are manipulated in security methods, locals in an untrusted parent are out of
scope inside the security method and vice versa. With additional static analysis on
information flow through locals, one might be able to safely implement security methods
as arbitrary, lexically scoped regions, as originally proposed [Roy et al. 2009]. We
expect that the additional static analysis required to support lexically scoped regions
would be easiest to implement in the Java compiler (javac), but these properties might
also be checked by the JVM during bytecode verification. We found mediating flows
through locals at method boundaries to strike a good balance between implementation
complexity for the application programmer and JVM developer.

3.2. Programming Model, VM, and OS Interaction

Laminar provides language extensions, a security library, and security system calls.
Table I depicts the Java APIs, which include methods that perform tag creation, de-
classification, label queries, and capability queries. The Laminar OS kernel exports
security system calls to the trusted VM for capability and label management, as shown
in Table II. These system calls are used by the Laminar VM internally to implement
security methods and are not directly exposed to Laminar applications. An application
not running on the Laminar VM may directly use these system calls to manage its
capabilities and labels, excluding drop_label_tcb, which can only be issued by the
trusted Laminar VM. The Laminar OS securely stores all of the persistent capabilities
of a user so that these capabilities can be used across user sessions. On login, the OS
kernel gives the capabilities of the user to the login shell. Laminar does not innovate in
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Table II. Laminar System Calls
The tag_t and capability_t types represent a single tag or capability, respectively. The struct label type
represents a set of tags that compose a label, and the capList_t type is a list of capabilities.

System Call Description
tag_t alloc_tag(capList_t &caps) Return a new tag, add plus and minus capabilities to the

calling principal, and write new capabilities into caps.
int add_task_tag(tag_t t, int type) Add a tag to the current principal’s secrecy or integrity

label (secrecy or integrity selected by type), as allowed
by the principal’s capabilities.

int remove_task_tag(tag_t t, int type) Remove a tag from the current principal’s secrecy or
integrity label (secrecy or integrity selected by type).

int drop_label_tcb(pid_t tid) Drop the current temporary labels of the thread without
capability checks, invoked only by threads with the
special integrity tag.

int drop_capabilities(capList_t *caps,
int tmp)

Drop the given capabilities from the current principal.
tmp is a flag used by the VM to suspend a capability only
for a security method or during a fork().

int write_capability(capability_t cap,
int fd)

Send a capability to another thread via a pipe.

int create_file_labeled(char* name,
mode_t m, struct label *S, struct label
*I)

Create a labeled file with labels S and I.

int mkdir_labeled(char* name, mode_t m,
struct label *S, struct label *I)

Create a labeled directory with labels S and I.

capability persistence but rather adopts a simple and stylized model. Asbestos develops
a more robust model for persistent storage of tags [Vandebogart et al. 2007].

The secure keyword applies to methods used as security methods. The VM and kernel
enforce the rule that the program may only access labeled data objects (e.g., files, heap-
allocated objects, arrays) inside security methods, which includes all methods directly
or transitively invoked from a declared security method. Outside security methods,
threads always have empty labels but may hold capabilities that determine whether
the thread may enter a security method. Threads are the only principals in Laminar,
and the VM modifies the thread’s labels and capabilities when it enters and exits a
security method. When a thread enters a security method, it dynamically passes the
desired secrecy label and integrity label as arguments to the method, using the opaque
Label object. If the security method endorses or declassifies data, it may also accept
the necessary capabilities as an argument, as a CapSet object. During the execution
of a security method, the VM internally uses these labels and capabilities for DIFC
enforcement, and the kernel mediates thread accesses to system resources according
to the security method’s labels. Because security methods are not visible to the kernel,
the VM proxies the security method by tainting the thread with the correct labels and
capabilities. At the end of the security method, the VM restores the thread’s original
capabilities and labels.

3.3. Security Methods

A security method is a special method type that has parameters for a secrecy and
integrity label. A security method that can endorse or declassify data also has a pa-
rameter for a capability set. The labels dictate which data the program may touch
inside the security method. Labels on secure method parameters must satisfy the data
flow constraints of the labels on the security method, and the label on the returned
data must satisfy the data flow equations for the labels of the calling context. In the
Laminar implementation, these labels and capabilities are represented as sets that
can be variably sized and assigned at runtime. Label and capability sets are stored as
opaque objects, which cannot be enumerated (see Section 5.1).
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Only code within a security method can access data with nonempty labels. Security
methods demarcate the methods that are security sensitive, thus easing the program-
mer’s burden when adding security policies to existing programs. The programmer
must place all code that references labeled data in a security method, such as a routine
that reads a sensitive file into a data structure. In our experience, only a small portion
of code and data in a program is security sensitive and will belong in a security method,
which simplifies the task of auditing security-sensitive code. This design also limits the
amount of work the VM must do to enforce DIFC.

Dynamic DIFC Enforcement with Barriers. The VM inserts barriers that ensure no
reference outside a security method reads or writes labeled data, and all references
inside a security method follow the DIFC rules. A barrier is a snippet of code the VM
executes before every read and write to an object and is a standard implementation
feature in VMs for garbage-collected languages [Blackburn and Hosking 2004]. The
Laminar VM inserts barriers at every object read and write. Outside the security
method, the barrier throws an exception if the program tries to read or write data with
a nonempty secrecy or integrity label. Inside a security method, every time the program
reads or writes objects or kernel resources, the barrier checks that the information flow
follows the policies specified by the current labels of the security method.

For example, an assignment w=r inside a security method M is safe if and only if the
information flow from r to w is legal for the thread inside M. Note that the Laminar
library API (Table I) does not include a routine for adding labels to a thread. In order
to add labels, threads must start a security method.

Security methods have the added benefit that they make the DIFC implementation
more efficient because the barrier checks outside a security method are simpler than
checks inside a security method. Outside a security method, the barrier simply checks
if data have nonempty labels and throws an exception if they do, since any access to
secure data is forbidden. Inside a security method, the DIFC barriers must compare
DIFC labels of references to ascertain if the information flow is legal.

In summary, security methods make it easier for programmers to add security policies
to existing programs. They make it easier for programmers to audit security code.
They limit the effects of implicit information flows (Section 6.4), and they make the
implementation more efficient.

Inputs, Return Values, and Container Objects. Security methods have two default
parameters: a secrecy label and an integrity label. A declassifier or endorser includes
a third parameter: the capability set. Security methods may take other parameters
as inputs and/or return an output value so long as the input or return is a valid
information flow. These input and output values may be primitives (int, boolean, etc.)
or object references. Generally speaking, security methods with a nonempty secrecy
label cannot return a value, and security methods with a nonempty integrity label
cannot read inputs without being wrapped in an endorser. Section 5.2 details the
specific rules.

A key abstraction in Laminar that improves programmability is the stylized use
of container objects. The programmer allocates objects with secret labels outside of a
secret security method by invoking new and passing the appropriate labels. Labeled
object creation is explained further in Section 5.2. The program then passes this object
to security methods. Each security method may update the contents of the object, but
outside of the security method, the object’s contents and any modifications are opaque.
Code outside of a security method may not dereference references to objects with non-
empty labels.

Example. Figure 2 presents the calendar example from the introduction. A calendar
server calls code provided by Bob that reads the Calendar object belonging to Alice,
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Fig. 2. Example security methods that read and write a secure calendar. Bob provides the first two security
methods. BobFindMeetingTime executes with both Alice and Bob’s secrecy tags (a and b, respectively). This
method selects a meeting time such that Alice and Bob are both available and places it in a MeetingTime
object with label 〈S(a, b), I()〉. BobDeclassify then removes Bob’s secrecy tag (b). The calendar application
then executes Alice’s endorser (AliceCheckMeeting), which checks that the MeetingTime object is well-formed,
and then adds the i integrity tag and writes the meeting time to a file with label 〈S(a), I(i)〉. The label on
Alice’s calendar ensures both secrecy of her calendar data, as well as that all updates have been checked by
trusted code. Execution order is indicated with LX, where X is the line number if the code were inlined into
ScheduleMeeting.
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creates a Meeting object, exports the meeting time to Bob, and writes the meeting
into Alice’s calendar file. The code begins at L1 by allocating a container object, Mtg,
which is passed to subsequent security methods to store the secret meeting time.
When the thread enters the security method BobFindMeetingTime to read the calendars
(line L2), the VM sets the thread’s secrecy label to S(a, b) and therefore the thread
can read secret Calendar data guarded by tags a and b. The code that reads each
calendar (line L3) is a valid information flow because the thread’s labels are more
restrictive than either Calendar’s labels (e.g., 〈S(a, b), I()〉 ⊇ 〈S(a), I()〉). The thread
has the capability C(b−) to declassify tag b, which is used to enter the security method
BobDeclassify, at line L5. Entering the nested declassifier at line L5may be conditioned
on additional checks to prevent information leaks. Before writing the meeting time into
Alice’s calendar file, the thread must acquire integrity label I(i) by calling an endorser
function, AliceCheckMeeting, which checks that the data to be written meet Alice’s
invariants, such as prohibiting conflicting meeting times.

The VM inserts barriers that check the information flow safety at every object read
and write. Locals are limited to method scope and implicitly have the same label as the
security method. The code at Line L3 computes the common meeting time and stores
it in the container object referred to by Mtg. For instance, the read barrier code tests
if reading fields of objects Other and Bob are valid information flows and whether the
writes into the newly created Meeting object are legal. The writes into the Meeting object
are legal because the object has the same secrecy label as the thread in the security
method at that point. A nested security method declassifies the meeting to Alice (L5/L6),
updating the meeting time in this.val. By replacing the object referenced by this.val
with a copy with a lower secrecy level (Line L6), this code effectively removes the tag b
from the output. Copying and relabeling tmp at L6 is legal because the method has the
b− capability and can declassify data protected by the secrecy tag b. Notice that if line
L6 performed copyAndLabel(tmp, S(), I()) to remove all tags from the secrecy label,
the VM would throw an exception because when the thread is in the security method,
it does not have the a− capability and cannot remove the a tag from the data. In this
example, the kernel checks the file operations in line L12 and L13 that write to Alice’s
calendar file, and the VM checks the other operations on application data structures.

Security Method Initialization. Laminar enforces the following rules when a thread
enters a security method. Let SR, IR, and CR be the secrecy label, integrity label,
and capability sets of a security method, R. Similarly, let SP , IP , and CP be the sets
associated with a kernel thread P that enters and then leaves R. Laminar supports
arbitrary nesting of security methods. P could, therefore, already be inside a security
method when it enters R. When the thread P enters the security method R, the VM
ensures that the following rules hold:

(SR − SP) ⊆ C+
p and (SP − SR) ⊆ C−

p (1)

(IR − IP) ⊆ C+
p and (IP − IR) ⊆ C−

p (2)

CR ⊆ CP (3)

The first two rules state that, in order for principal P to enter method R, P must have
the required capabilities to change its labels to R’s labels. The third rule states that the
principal P can only retain a subset of its current capabilities when it enters a security
method. While the security method executes, the sets associated with P change to SR,
IR, and CR.

These rules encapsulate the common-sense understanding that a parent principal,
P, has control over the labels and capabilities it passes to a security method and
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that the VM will prevent the principal from creating a security method with security
properties that the principal itself lacks. The rules also state that security methods
nest in the natural way based on the labels and capabilities of the thread entering the
nested method.

3.4. VM and OS Interface

Our design trusts the Laminar VM and OS kernel for DIFC enforcement. The VM
is trusted to enforce DIFC policies on application data structures and implements
security methods without kernel involvement. The kernel is responsible for enforcing
DIFC rules on OS kernel abstractions, such as files and pipes. If a security method
does not perform a system call, the VM does all the enforcement and does not involve
the kernel. For example, if code inside a security method with secrecy tags tries to
write to a public object, the VM will throw an exception that will end the security
method. As an optimization, the VM does not notify the kernel of changes to the
thread’s labels until the VM needs to issue a system call on behalf of the application.
The kernel enforces DIFC rules on each system call according to the thread’s labels
and the labels of any other objects involved (e.g., writing data to a file or the network).
For standard system calls, such as read, the labels of the thread and file handle are
implicit system call arguments. The VM communicates security metadata to the kernel
via the Laminar system calls (Table II). For instance, the VM changes the labels on the
current application thread (embodied as a kernel thread) executing within a security
method using the add_task_tag system call. The kernel ensures that the labels are
legal given the thread’s capabilities.

Acquiring Tags and Capabilities. Principals (threads) in Laminar acquire capabil-
ities in three ways. They allocate a new tag, they inherit them through fork(), or
they perform interprocess communication. A thread working on behalf of one user
may call security methods provided by another user; for instance, Alice’s thread may
call Bob’s declassifier with the capability to read Alice’s calendar. Another thread
running on Bob’s behalf can only acquire Alice’s capability if Alice shares it over
an IPC channel. The system carefully mediates capability acquisition lest a princi-
pal incorrectly declassify or endorse data. Laminar assumes a one-to-one correspon-
dence between application and kernel threads. Application threads use the Lami-
nar language API, which in turn invokes the system calls for managing tags and
capabilities.

A principal allocates a new tag in the kernel via the alloc_tag system call, which is
used to implement the language API function createAndAddCapability. As a result of
the system call, the kernel security module will create and return a new, unique tag.
The principal that allocates a tag becomes the owner of the new tag. The owner can
give the plus and minus capabilities for the new tag to any other principal with whom
it can legally communicate. A thread explicitly selects which capabilities it will pass
to a security method, and the trusted VM can temporarily remove the capability from
the thread using the drop_capabilities system call.

Threads and security methods form a natural hierarchy of principals. When a kernel
thread forks off a new thread, it can initialize the new thread with a subset of its
capabilities. Similarly, when a thread enters a security method, the thread retains
only the subset of its capabilities specified by the method. In general, when a new
principal is created, its capabilities are a subset of its immediate parent, which the VM
and kernel enforce.

The passing of all interthread and interprocess capabilities is mediated by the kernel,
specifically with the write_capability kernel call. This system call checks that the
labels of the sender and receiver allow communication.
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Removing Tags and Capabilities. The Laminar VM is responsible for correctly setting
thread labels and capabilities inside security methods. When a thread enters a security
method, the VM first makes sure that the thread has sufficient capabilities to enter
the method. If the thread may enter the security method, the VM sets the labels and
capabilities of the thread to equal those specified by the security method. The VM sets
the thread’s capabilities to the empty set when it enters a security method that is not
passed capabilities (i.e., not a declassifier or endorser). Similarly, when the thread exits
the security method, the VM restores the labels and capabilities the thread had just
before it entered the method. On exiting a nested security method, the VM restores the
labels and capabilities of the thread to those of the parent security method.

The Laminar language API provides a method, removeCapability, that removes
a thread’s capability in the VM, preventing use as an argument to a later security
method. To prevent threads from using the capability set as a covert channel, capa-
bilities must be created and removed outside of a security method (Section 6.6). The
removeCapability VM call uses the drop_capability system call to drop the capability
from the OS kernel thread.

Similarly, if a security method issues a system call, the VM first invokes
the add_task_tag or remove_task_tag system calls to change the thread’s labels in
the OS kernel. As an optimization, the VM postpones setting the thread’s labels in the
kernel until just before the first system call and at the end of the security method. This
system call has no user API; it is used solely by the VM.

The Laminar VM prohibits security methods from changing their labels; labels stay
the same throughout the security method to prevent leaks through local variables
(Section 5.2). Labels are stored as opaque objects that cannot be enumerated. To change
labels in the middle of a security method, a thread begins a nested security method.

Consider an example when a thread only has the a+ capability and starts a security
method with secrecy label 〈S(a)〉. The Laminar VM sets the secrecy label of the thread
to 〈S(a)〉 when the security method begins. When the security method ends, the VM
forces the thread to drop the secrecy label, even if it does not have the a− capability.
To drop 〈S(a)〉 from a thread, the VM contains a high-integrity thread, running with a
special integrity tag called tcb that is trusted by the kernel. Using the drop_label_tcb
system call, this trusted thread may drop all current labels for a thread without having
the appropriate capabilities.

A single, high-integrity thread in the VM limits exposure to bugs because the kernel
enforces that only the thread with the tcb tag may drop labels within a single address
space. The VM cannot drop the labels on other applications. Only a small, auditable
portion of the VM is trusted to run with this special label.

Capability Persistence and Revocation. Capability persistence and revocation are
always issues for capability-based systems, and Laminar does not innovate any solu-
tions. However, its use of capabilities is simple and stylized. The OS kernel stores the
persistent capabilities for each user in a file. On login, the OS gives the login shell all
of the user’s persistent capabilities, just as it gives the shell access to the controlling
terminal. If a user wishes to revoke access to a resource for which she has already
shared a capability, she must allocate a new capability and relabel the data. Because
tags are drawn from a 64-bit identifier space, tag exhaustion is not a concern.

3.5. Security Discussion

The Laminar OS mediates information flow on OS resources, such as files and pipes.
The Laminar JVM mediates information flows within the application using barriers,
by restricting the programming model, and constraining how data enter and leave a
security method. Implicit flows are mediated by masking the control flow within the
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security method (Section 6.4). Updating the capability set of a thread is treated as a
public write, preventing covert channels through this abstraction. We allow security
methods to execute concurrently. Our threat model assumes that security methods
will terminate and will not leak information through timing channels, including the
execution time of a security method; Sections 6.4 and 6.5 discuss techniques that could
be adopted in a production Laminar deployment to uphold these assumptions.

Although the security method design facilitates incremental adoption because
threads manage capabilities, this choice unfortunately places a measure of trust in
the code that calls security methods. To limit the risk of capability mismanagement,
only security methods that endorse or declassify data are passed capabilities, and these
methods must be declared final. Section 6.6 discusses this issue in more detail.

3.6. Labeling Data

The VM labels data objects at allocation time to avoid races between creation and
labeling. The VM labels objects allocated within a security method with the secrecy and
integrity labels of that method. The create_file_labeled and mkdir_labeled kernel
calls create labeled files and directories. Other system resources use the labels of their
creating thread.

Similar to most other DIFC systems, Laminar uses immutable labels. To change a
label, the user must copy the data object. Section 5.4 discusses implementation details
and the interaction of object labels with the Java memory model. Dynamic relabeling
in a multithreaded environment requires additional synchronization to ensure that a
label check on a data object and its subsequent use by principal A are atomic with
respect to relabeling by principal B. Without atomicity, an information flow rule may
be violated. For example, A checks the label, B changes the label to be more secret,
B writes secret data, and then A uses the data. Atomic relabeling can prevent this
unauthorized flow from B to A. Laminar currently supports only immutable labels on
files. It may be possible to safely relabel files using additional synchronization.

3.7. Compatibility Challenges

Although Laminar is designed to be incrementally deployed, some implementation
techniques are incompatible with any DIFC system. For instance, a library might
memoize results without regard for labels. If a function memoizes its result in a security
method with one label, a later call with a different label may attempt to return the
memoized value. Because the memoized result is secret, Laminar will prevent the
attempt to return it. Programmers or the VM must modify such code to work in any
DIFC system.

3.8. Trusted Computing Base

To implement Laminar, we added approximately 2,000 lines of code to Jikes RVM
[Alpern et al. 2000],2 added a 1,000-line Linux security module, and modified 500 lines
of the Linux kernel. This relatively small amount of code means that Laminar can be
audited.

The Laminar design does not trust javac to enforce information flow rules but does
trust javac to provide valid bytecode that faithfully represents the Java source. Jikes
RVM does not include a bytecode verifier—a feature of a secure, production VM that
should reject malformed bytecode.

We rely on the standardization of the VM and the OS as the basis of Laminar’s trust.
In addition to trusting the base VM, Laminar requires that the VM correctly inserts the
appropriate read and write barriers (Section 3.3) for all accesses and optimizes them

2http://www.jikesrvm.org.
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correctly. Read and write barrier insertion is standard in many VMs [Blackburn and
Hosking 2004]. In Linux, Laminar assumes that the kernel has the proper mechanisms
to call into Linux Security Modules (LSM) [Wright et al. 2002]. Because many projects
rely on LSMs, the Linux code base is under constant audit to make sure all necessary
calls are made.

4. OS SUPPORT TO CONTROL INFORMATION FLOW

We have implemented support for DIFC in Linux version 2.6.22.6 as an LSM [Wright
et al. 2002]. LSM provides hooks into the kernel that customize authorization rules.
We added a set of system calls to manage labels and capabilities, as listed in Table II.
Some LSM systems, such as SELinux [Loscocco and Smalley 2001], manage access
control settings through a custom filesystem similar to /proc. A custom filesystem is
isomorphic to adding new system calls. The Laminar security module contains about
1,000 lines of new code, and we modified about 500 lines of existing kernel code to
implement the Laminar OS.

Tags, Labels, and Capabilities. Tags are represented by 64-bit integers and allocated
via the alloc_tag() system call. The OS stores labels and capabilities for system re-
sources in the opaque security field of the appropriate Linux objects (e.g., task_struct,
inode, and file). The OS persistently stores secrecy and integrity labels for files in the
files’ extended attributes. Most of the standard local filesystems for Linux support ex-
tended attributes, including ext2, ext3, xfs, and reiserfs. A mature implementation
of Laminar could adopt a similar strategy to Flume for filesystems without extended
attributes, encoding a label identifier in the extra bits of the user and group identifier
fields of a file’s inode [Krohn et al. 2007].

Files. Using LSM, Laminar intercepts inode and file accesses, which perform all
operations on unopened files and file handles, respectively. The inode and file data
structures are used to implement a variety of abstractions, such as sockets and pipes.
The Laminar security hooks perform a straightforward check of the rules listed in
Section 2.2. The secrecy and integrity labels of an inode protect its contents and its
metadata, except for the name and labels, which are protected by the labels of the
parent directory.

For instance, if a process with secrecy label 〈S(a)〉 tries to read directory foo with the
same secrecy label, the process will be able to see the names and labels of all files in
foo. If file foo/bar has secrecy label 〈S(a, b)〉, any attempt to read the file’s attributes,
such as its size, will fail, as size of the file could otherwise be used to leak information
about the file’s contents.

In a typical filesystem tree, secrecy increases from the root to the leaves. Creating
labeled files in a DIFC system is tricky because it involves writing a new entry in
a parent directory, which can disclose secret information. For example, we prevent
a principal with secrecy label 〈S(a)〉 from creating a file with secrecy label 〈S(a)〉 in
an unlabeled directory because it can leak information through the file name. In-
stead, the principal should pre-create the file before tainting itself with the secrecy
label.

A principal may use the newly introduced create_labeled and mkdir_labeled sys-
tem calls to create a file or directory with secrecy and integrity labels different from the
principal’s current labels. Informally, a principal may create a differently labeled file if
its current labels permit reading and writing the parent directory, and it has capabili-
ties such that it can change its labels to match the new file. More formally, we allow a
principal with labels 〈Sp, Ip〉 to create a labeled file or directory with labels 〈Sf , If 〉 if
(1) Sp ⊆ Sf and If ⊆ Ip, (2) the principal has capabilities to acquire labels 〈Sf , If 〉, and
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(3) the principal can read and write the parent directory with its current secrecy and
integrity label. This approach prevents information leaks during file creation while
maintaining a logical and useful interface.

Applying integrity labels to a filesystem tree is more complex than secrecy. The
intuitive reason for integrity labels on directories is to prevent an attacker from tricking
a program into opening the wrong file, for instance using symbolic links. The practical
difficulty with integrity for directories is that a task with integrity label IA cannot read
any files or directories without this label, potentially including /. If system directories,
such as /home, have the union of all integrity labels, then an administrator cannot add
home directories for new users without being given the integrity labels of all existing
users. Flume solves this problem by providing a flat namespace that elides this problem
with hierarchical directory traversal and simplifies application-level data storage with
integrity labels [Krohn et al. 2007].

Applying integrity labels to a traditional Unix directory structure brings out a fun-
damental design tension in DIFC OSes between usability and minimizing trust in the
administrator. Laminar finds a middle ground by labeling system directories (e.g., /,
/etc, /home) with a system administrator integrity label when the system is installed.
A user may choose to trust the system administrator’s integrity label and read absolute
paths to files, or she may eschew trust in the system administrator by exclusively open-
ing relative paths. In the worst case, she creates her own chroot environment. Simple
relative paths were sufficient for all of the case studies in this article. Laminar’s ap-
proach supports incremental deployability by allowing users to choose whether to trust
the system administrator at the cost of extra work for stronger integrity guarantees.

Pipes. Laminar mediates Interprocess Communication (IPC) over pipes by labeling
the inode associated with the pipe message buffer. A process may read or write to a
pipe so long as its labels are compatible with the labels of the pipe. Message delivery
over a pipe in Laminar is unreliable. An error code due to an incompatible label or
a full pipe buffer can leak information, so messages that cannot be delivered are
silently dropped. Unreliable pipes are common in OS DIFC implementations [Krohn
et al. 2007; Vandebogart et al. 2007]. Linux does not include LSM hooks in the pipe
implementation; Laminar adds LSM hooks to the pipe implementation in order to
mediate reads and writes to pipes.

To prevent illegal information flows in Laminar, a pipe does not deliver an end-of-
file (EOF) notification when the writer exits or closes the pipe if the writing thread
cannot write to the pipe at the time it exits. This lack of termination implies that, if
a process exits inside of a security method, the JVM must ensure that the thread’s
label is visible to the kernel (Section 3.4) before issuing an exit system call, so that
the appropriate policies are applied when the OS closes the open file descriptors. Thus,
Laminar, like many OS DIFC implementations, only delivers EOF notifications if writing
the notification constitutes a legal flow.

Thus, the practical implication of unreliable delivery and eliminating EOF notification
is that reads from a pipe should be nonblocking. Otherwise, an application may hang
waiting for an EOF notification. In the common case where all applications in a pipeline
have the same labels, traditional Unix pipe behavior can be approximated with a
timeout. Using pipes in programs with heterogeneous, dynamic labels may require
modification for a DIFC environment.

Network Sockets and Other IPC. The Laminar OS prototype treats network sockets
and other IPC channels as having empty secrecy and integrity labels. Thus, input from
the network must be read by code with empty secrecy and integrity labels, and the data
must be labeled in a security method that validates the input. Managing information
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flows across systems is beyond the scope of this work, but has been addressed in other
systems including DStar [Zeldovich et al. 2008]. The inodes associated with other
Linux IPC abstractions, such as System V IPC, could be labeled similarly to pipes but
would likely require additional analysis of any potential information flows resulting
from idiosyncratic behavior.

5. JAVA VM SUPPORT TO CONTROL INFORMATION FLOW

We implement Laminar’s trusted VM in Jikes RVM 3.0.0,1 a well performing Java-in-
Java VM [Alpern et al. 2000]. Our Laminar implementation is publicly available on
the Jikes RVM Research Archive and on GitHub.3 All subsequent uses of the term VM
refer to the Laminar-enhanced implementation in Jikes RVM.

When a thread starts a security method, the VM inserts a check that determines
if the thread has the capabilities to initialize the security method with the specified
labels and capabilities, as described in Section 3.3. Thread capabilities are stored in
the kernel. The VM caches a copy of the current capabilities of each thread to make
the checks efficient inside the security method.

The VM enforces information flow control for accesses to three types of application
data: objects, which reside in the heap; locals, which reside on the stack and in registers;
and statics, which reside in a global table.4 This section describes how the VM enforces
the DIFC rules on objects, local variables, and static variables.

5.1. Controlling Information Flow on Objects

The VM interposes on every read and write to an object or static by transparently
adding barriers before the operation. Barriers are not visible to the programmer and
cannot be avoided, thus creating a natural point to mediate explicit data flows. The
VM uses barriers to ensure that all accesses to data with nonempty labels occur within
a security method and that references inside a security method conform to the DIFC
rules in Section 2.

Heap Objects. The VM tracks information flow for labeled heap objects. When an
object is allocated, the VM assigns immutable secrecy and integrity labels to the object.
We modify the allocator to take secrecy and integrity labels as parameters; the allocator
adds two words to each object’s header, which point to secrecy and integrity labels.
The VM assigns objects allocated inside security methods the labels of the method
at the allocation point. To change an object’s labels, our implementation provides an
API call, copyAndLabel, that clones an object with specified labels. The label change
must conform to the label change rule (Section 2). The VM allocates labeled objects
into a separate labeled object space in the heap, which we exploit to optimize the
instrumentation that checks whether an object is labeled or not.

Each object acts as a security container for its fields, and the object’s labels protect
the fields from illegal access. The Laminar prototype requires that all fields of an object
have the same labels. For example, consider an object pointed to by the reference o.
The object has two fields, primitive integer x and reference y. When the program reads
or writes o.x or o.y, the VM enforces DIFC rules based on the labels of the object
referenced by o. If the program has labels that allow it to read the object referenced by
o, then it may read or copy o.x and o.y. However, the object that o.y references may
have the same or different labels. Thus, the programmer may assign distinct labels

3http://www.jikesrvm.org/Research+Archive and https://github.com/ut-osa/laminar.
4Although objects and nonvolatile statics may be register-allocated and nonescaping objects can be scalar-
replaced, objects appear to be in the heap and statics appear to be in the global table when the VM compiler
adds the needed barriers.
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to the object referenced by o.y. If the application performs the dereference o.y.foo,
the VM must verify that the security method may read and dereference the reference
o.y based on the labels of the object referenced by o and then separately check the
read of reference foo based on the labels of the object referenced by o.y. The security
container model simplifies the task of labeling objects at allocation time, which is
easier for programmers to reason about and cheaper for the VM to enforce compared
to labeling individual object fields.

Labels. Applications do not have direct access to labels on data or principals, which
are used internally by the VM to enforce DIFC rules. Recall that a label may contain
one or more tags.

The Laminar API provides two functions that return a label. The functions return
the label in an immutable, opaque object of type Label. The instantiations of La-
bel support operations such as isSubsetOf(), minus(), and union(). The function
createAndAddCapability invokes the alloc_tag Laminar OS system call, which cre-
ates a new tag and adds the associated capabilities to the current thread, and returns
a Label object containing the single new tag to the application. The getCurrentLabel()
function returns the secrecy or integrity label of the enclosing security method.

For efficiency, Label objects may be safely shared by objects, security methods, and
threads because they are immutable; operations such as minus() and union() return a
new object instead of modifying an existing Label. Label objects are not used internally
by the VM for DIFC enforcement. Internally, the VM implements Label as a sorted
array of 64-bit integers to hold tags. Because a Label object is opaque, applications
cannot observe the individual values of the tags. Moreover, because object labels are
immutable, any attempt to change the labels on an object requires writing a reference
to the new object somewhere, which is an explicit, regulated information flow. Thus, a
program cannot create a covert channel by creating a Label with irrelevant tags.

Similar to any other object, the VM associates secrecy and integrity labels with the
instances of Label. An application may create a Label object using the new keyword or by
using trusted Laminar API functions. When a Label object is created, it has the secrecy
level of the thread at the time it was created. The integrity level of the Label object de-
pends on which function created it: Label objects created by new also have the integrity
of the thread at the time of creation, whereas Label objects created by the Laminar
API functions are given the highest integrity (�, representing the set of all possible in-
tegrity tags) because we trust the API and the VM. In general, Label objects have high
integrity and empty secrecy and can be used as parameters to any security method.

VM Instrumentation. To enforce DIFC rules, the VM’s compiler inserts barrier in-
strumentation just prior to every read and write in the application (Section 3.3). Inside
security methods, the compiler inserts barriers at a labeled object allocation (before the
compiler invokes the application’s constructor) that sets the labels. It inserts barriers
at every read from and write to an object field or array element. Inside security meth-
ods, barriers load the accessed objects’ secrecy and integrity Labels and check that
they conform to the current security method’s labels and capabilities. Outside security
methods, read and write barriers check that the accessed objects are unlabeled (i.e.,
have empty secrecy and integrity labels).

The compiler inserts different barriers depending on whether the access occurs in-
side or outside a security method. If a method is called both from inside and outside
security method contexts, the compiler will produce two versions of the method. In
our prototype implementation, when a method first executes, the JVM invokes the
compiler, and it checks whether the thread is executing a security method and inserts
barriers accordingly. Subsequent recompilation at higher optimization levels reuses

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.



4:24 D. E. Porter et al.

this decision. This approach, which we call static barriers, fails if a method is called
from both within and outside a security method. Thus, we also support a configuration
in which the compiler adds dynamic barriers. The barriers check whether the current
thread is in a security method or not and then execute the correct barrier. A produc-
tion implementation should use cloning to compile two versions of methods called from
both contexts, and each call site can call the appropriate version based on context.
(Some software transactional memory implementations use a similar approach [Ni
et al. 2008].) Because which version to call is statically knowable at each compiled
call site, the overhead one would attain with a method cloning implementation should
match what we measure for static barriers.

Because object labels are immutable, and security methods cannot change their
labels, repeating barriers on the same object is redundant. We implemented an in-
traprocedural, flow-sensitive data-flow analysis that identifies redundant barriers and
removes them. A read (or write) barrier is redundant if the object has been read
(written), or if the object was allocated, along every incoming path. Although this opti-
mization is intraprocedural, the VM’s dynamic optimizing compiler inlines small and
hot methods by default, thus increasing the scope of redundancy elimination.

Example. Figure 3 computes the sum of the grades obtained by two different stu-
dents. The student1 and student2 objects are labeled and have different secrecy values
associated with them. Once the security method starts, the VM assigns the thread the
secrecy and integrity labels specified by S and I, respectively. Lines L2 and L3 read
labeled objects and result in a security exception if the flow from student1.grades or
student2.grades to the thread in the security method is not allowed. Line L4 stores the
value in a new labeled Integer object and stores the reference in the labeled avgHolder
object. At lines L5–L6, the thread calls a declassifying security method, passing it the
capability to add and remove the secrecy tags by making an unlabeled copy of the
avgHolder.value object. If the CapSet passed to the security method is not a subset of
the current thread’s capabilities, then the program throws a security exception at L5,
which the end of the security method may catch; this is followed by returning from the
security method. Security exceptions are a category of Java language exceptions and
may be caught by the security method author. The VM does not propagate exceptions
out of a security method (Section 6.2). Because the declassifier runs with an empty
label, it may assign the new reference into the unlabeled outputHolder.value field. In
practice, a declassifier such as declassifyAverage would be nested inside a security
method with a nonempty secrecy label that first checked the potential output, as in
Figure 2, and the application of rules in the VM would be similar.

5.2. Restricting Information Flow for Locals and Parameters

Laminar does not track labels on local variables because they cannot be used outside
the scope of the current method, thus precluding an information flow to or from a
security method. Laminar assumes that locals have the secrecy and integrity labels
of the enclosing security method or empty labels outside of a security method. All
security methods take as input two parameters: the secrecy label and integrity label.
Declassifiers and endorsers may take a third parameter: the capability set. For clarity,
these are indicated in examples with separate argument parentheses on the secure
keyword.

If the explicit flow is legal, security methods in Laminar can accept additional inputs
and return outputs of primitive values (int, boolean, etc.) and references, which are
passed-by-value. A security method with a nonempty integrity label may only accept
input if the calling function is also in a security method with higher integrity or the
capability to add all missing integrity tags (i.e., an endorser). A security method with
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Fig. 3. Securely computing the average grades of two students. The student1 and student2 objects are
labeled. The object credentials contains the secrecy, integrity, and capabilities sets with which the security
method is initialized. The statements on the right side are the checks that are performed by the VM. The
symbol ? indicates an assertion, � indicates an information flow check, and the internal function change-
Label(Label to, Label from, CapSet caps) checks whether a label change would be permitted given the
input capabilities (caps).

an empty integrity label may read any input. Similarly, a security method may only
return a value if it has an empty secrecy label or the value is returned to a more
secret security method. Because declassifiers tend to be nested, most declassification
examples write the output to an object or security container with an empty secrecy
label that is passed as input to the method.
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To enable containers for secure data, Laminar permits creation of objects with an
empty integrity label and nonempty secrecy label outside of a security method. By
creating objects with a nonempty secrecy label outside of a security method, the cre-
ation itself and the return of the reference cannot be dependent upon any secret in-
formation and thus cannot create any information flow. Once the initial secret object
reference is created, it can be passed to multiple security methods that operate on
secret data, acting as a container for secret data. Note that the first security method
the reference is passed to is the object’s constructor. If a labeled constructor throws
an exception, new must still return the labeled but uninitialized object. Because crit-
ical regions with an empty secrecy label but a nonempty integrity label can return a
value, allocation of objects with integrity tags can always be wrapped in an endorser
without any secrecy tags. The endorser may allocate an object with both secrecy and
integrity tags in its label so long as it drops its secrecy label before returning the
object.

Because a method with a nonempty secrecy label cannot return a value, the security
container abstraction serves as a means to facilitate passing secret, intermediate values
among security methods. The security container abstraction also neatly integrates with
common Java patterns of using the implicit this input parameter. In other words,
security methods may construct container objects and operate on them, as illustrated
in Figure 2.

5.3. Static Variables

Static (global) variables in the Laminar prototype have empty secrecy and integrity
labels. By inserting barriers at static variable accesses inside security methods, security
methods with an empty secrecy label may write static variables, and security methods
with an empty integrity label may read static variables.

We expect that a production implementation could support nonempty labels on statics
with modest overhead because static accesses are relatively infrequent compared to
field and array element accesses. Good security programming practices, like general-
purpose programming practices, recommend sparse use, if any, of statics. We did not
find this functionality necessary, and none of the applications in Section 9 needed
labeled static variables.

5.4. Instantiating Labels

Some care must be taken when creating objects to prevent race conditions between
assigning the object label and concurrent attempts to dereference the object. In the
Laminar implementation, the label fields of each object are hidden from the program-
mer (VM-internal) and are assigned between object allocation and calling the object’s
constructor. From the perspective of the Java memory model [Manson et al. 2005; Pugh
2005], the label fields should be treated similar to final fields. In the Java memory
model, final fields are visible to all threads before the constructor returns. The VM
must prevent reordering these assignments outside of the constructor, and the construc-
tor writer must not make external assignments of the this object. In order to protect
against a malicious constructor writer, a production Laminar VM would strengthen
this requirement slightly: The label assignments must be visible to all threads before
the constructor is called.

6. SECURITY IMPLICATIONS AND INFORMATION FLOW ENFORCEMENT MECHANISMS

This section summarizes the major classes of information flows that Laminar mediates
and the security implications of the Laminar design. This section pays particular atten-
tion to changes in the programming model introduced by Laminar, including security
methods and thread capabilities. This section also discusses security issues that are
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Table III. Laminar’s Programming Requirements and the Attacks They Prevent

Requirement Attack Prevented
Explicitly labeled objects in the JVM and OS. Illegal explicit information flow through objects.

Restrict information flow through explicit function
arguments and return values.

Illegal explicit information flow through arguments
and return values. Prevents information flow
through locals, which are out of scope in a security
method.

Static fields have empty security and integrity
labels.

Illegal explicit information flows through static
fields.

A security method may only have one exit point,
including exceptions. All exceptions will be caught
at the end of a security method.

Implicit information flows based on security method
control flow.

A security method will execute for a fixed amount of
time (not implemented).

Limits the bandwidth of timing and termination
channels, which would otherwise be increased by
multithreaded synchronization.

Dropping or creating a capability is treated as a
write to the thread’s capability set and requires an
empty secrecy label.

Prevents information flow through the thread’s
capability set.

A security method that takes a capability set as a
third parameter must be declared final.

Prevents passing capabilities to unintended
functions via inheritance.

not addressed in the Laminar prototype and how subsequent research could mitigate
these concerns. This section connects implementation details described previously in
Sections 4 and 5 with the system’s security properties. Table III summarizes the key
programming abstractions and requirements that Laminar places on the programmer
and the attacks they prevent, all of which are discussed later in more detail.

In each example and figure in this section, we use the following notation for labels.
The value of a secrecy label with tags a and b is represented as S(a, b). In Java, this
label is stored in a Label object. Similarly, an integrity label with tag i is represented
I(i). Finally, a capability set with the ability to add a and remove i is represented as
C(a+, i−).

6.1. Explicit Information Flows

An explicit information flow occurs when a program moves data from one variable
to another or from program memory into an OS-managed data sink, such as a file.
The Laminar JVM and OS kernel collaborate to track explicit information flows and
prevent illegal information flows. This subsection reviews the strategy for each major
programming abstraction and provides backward references for the implementation
details.

OS abstractions (Section 4). Laminar extends the Linux 2.6.22.6 kernel with an LSM
that adds secrecy and integrity labels to a task (OS-visible thread) and file inodes,
which include most IPC abstractions, such as pipes. The Laminar LSM interposes on
all file handle reads and writes to validate the flow, as well as other system calls such
as creating files and directories. We extend the Linux kernel with a few additional
system calls and security hooks.

Java objects (Section 5.1). Objects in the Laminar VM are explicitly labeled, and the
VM checks the labels of an object before all reads from and writes to an object field. The
Laminar VM extends Jikes RVM, which provides barriers that interpose each object
read and write.

Local variables (Section 5.2). Laminar does not label or track information flows
through local variables. Because labeled data are accessed in security methods, locals
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Fig. 4. Catch blocks handle illegal flows. Programmer may handle security exceptions separately from other
runtime errors (e.g., divide by zero). Label and capability values are inlined for clarity.

in an untrusted parent are out of scope inside the security method and vice versa.
With additional static analysis on information flow through locals, one could safely
implement security methods as arbitrary, lexically scoped blocks within a method, as
originally proposed [Roy et al. 2009], but we found the implementation was much more
complex.

Arguments and return values (Section 5.2). Laminar permits primitives and refer-
ences as input values to a security method as long as reading the input values would
not violate an integrity rule (e.g., no read down). Note that even object references are
passed by value in Java, so manipulating any input variables will not affect a local in
the calling frame. The VM will mediate all accesses to an object with barriers. Simi-
larly, the programming model is restricted such that a security method may only return
a value in the calling context if the write would not violate a secrecy rule (no write
down).

In the case of nested security methods, a more secret calling method may pass
an input to a less secret inner security method if the outer method has appropriate
declassification capability. Similarly, a higher integrity method may accept input from a
lower integrity parent if the outer method has the appropriate endorsement capability.
These rules for nested security methods are necessary to facilitate declassification and
endorsement.

Static variables (Section 5.3). The Laminar prototype treats all static fields as having
empty labels. The Laminar VM interposes on all static field accesses and prevents
illegal information flows to statics. In general, static fields are used infrequently, and
our application case studies did not require nonempty labels for static variables.

6.2. Handling Illegal Flows

When code in a security method attempts an illegal explicit information flow, the VM
creates an exception that transfers control to the end of the security method. As a
programmer convenience, the security method may catch exceptions in order to restore
program invariants. Any exceptions uncaught by the programmer will be caught by
the VM before the security method ends, thus hiding the control flow of the security
method from the caller.

For example, the code in Figure 4 shows an illegal explicit flow. The code attempts to
copy and thus leak the value of secret variable o.H, which it may not declassify, to the
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static, nonsecret variable L. Laminar raises an exception because the security method
does not have the right to declassify o.H. The value of L does not change. The catch
block gives the programmer a chance to restore program invariants before exiting the
security method.

If a thread tries to enter a security method for which it lacks appropriate capabilities,
or if the thread passes illegal inputs to the security method, the VM raises an exception
and transfers control to the security method’s terminating catch block. Essentially,
entering a security method with invalid credentials will effectively skip execution of
the security method without revealing any information to the calling thread.

If a system call is attempted that would generate an illegal information flow, the OS
returns a unique error code to the VM. The VM treats this error as a security exception;
that is, the same way as an illegal flow through application-level variables.

An attempt to access labeled data outside of a security method will terminate the
application. To prevent covert channels by testing whether an object is labeled at all,
assignments to references must be treated as explicit information flows, described in
the next subsection.

6.3. Information Flow through Object References

When a labeled object is created in a security method, Laminar restricts how the object
stores references in order to prevent information leaks. One option is that an object
reference can be written to a static variable, which must have empty secrecy and
integrity labels. Therefore, only a method with the capability to drop its labels (i.e., a
declassifier) can store a labeled object reference in a static. Similarly, security methods
with an empty secrecy label can return an object reference to the caller.

A security method may store a reference to one object inside of another. For instance,
suppose a security method writes a reference to newly created object x into object o’s
field o.p. This assignment is an explicit flow from the security method into object o, and
the VM-inserted barriers check the information flow. If o’s labels are 〈S(o), I()〉 and the
security method’s labels are 〈S(o, x), I()〉, this assignment is an illegal flow that would
violate the secrecy rule, and it triggers a security exception.

Programmers may find it helpful to pass an object reference as input to multiple
security methods. This convention does not leak data because object references are
passed by value in the Java calling convention. As discussed earlier, returning an
initial reference to an object or storing the reference in a static requires the capability
to declassify the secret. Subsequent reads of the reference will not leak secret data. A
subsequent security method cannot update a static reference unless it can declassify
all of its secret data. Similarly, overwriting an input parameter in a security method
does not propagate information to the caller because object references are passed by
value in Java.

This pattern for passing secret data among security methods can be generalized by
creating security container objects—an object whose reference is public which stores
a set of secret data or object references. Security methods with the same secrecy la-
bel as the security container may conveniently write to the object and accept its ref-
erence as input. This convention does not leak any information because the public
reference is never changed, and the contents of the container are protected by VM
barriers.

To facilitate this pattern, we permit new to operate as a security method that can
return a newly constructed object. Because the object is actually allocated from the heap
and labeled before the constructor is called, a labeled object can always be returned
without leaking secret information. If the constructor fails or throws an exception, the
exception is masked, just as with any other security method, and a partially initialized,
but labeled, object is returned. Objects with integrity tags must be allocated inside of
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Fig. 5. Allocating and passing objects among security methods using local references. Runtime values of
labels and capability sets are inlined for clarity.

an endorser security method. Nested security methods can allow an endorser with the
capability to add a secrecy tag to create an object with both secrecy and integrity tags
in its label. This approach makes it easier for the programmer to create a security
container and pass it among security methods, without creating data leaks.

Local reference example. Figure 5 shows an example in which a local object reference
m is passed among security methods. The constructor for the new MyObj creates a labeled
object at line L1. This object is assigned to local reference m and passed to the security
method manipulateObj, where it is modified (L4). Outside of the security method, the
reference m may be safely copied to another reference k. An attempt to dereference
either reference outside of a security method will result in a runtime exception, since
both point to a labeled object.

Integrity example. Figure 5 also illustrates how Laminar guarantees integrity. In
line L1 we create an object and label it with integrity label b. This object is returned to
the calling thread and assigned to m. This reference m is passed to a security method
(manipulateObj) but because the local reference itself is untrusted, the reference must
be endorsed (L2) and then passed to the nested, high-integrity security method. The
reference k is also assigned outside the security method to a high-integrity object at
line L6. Since Laminar does not track labels of references, such an assignment outside
the security method is valid. However, Laminar would prevent low-integrity code from
modifying the high-integrity object. For example, the VM will raise an exception at line
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Fig. 6. An example implicit flow. Label and capability values are inlined for clarity.

L7 when the value of the object pointed to by k is dereferenced outside of a security
method.

Secrecy example. Figure 5 illustrates how an object can also be used as a security
container. As discussed earlier, reference m points to a secret object, which cannot be
dereferenced outside of a security method. This object may store other secrets, such
as object reference x, which can be read and modified inside high-secrecy security
methods, illustrated in Line L5.

6.4. Implicit Information Flows

Security methods limit implicit flows by hiding the control flow within the security
method and preventing exceptional control flow from leaving the method. An implicit
information flow leaks secret data through control flow decisions [Denning and Denning
1977]. To deal with implicit flows due to exceptional control flow, the VM requires
every security method to have a catch block, as shown in Figure 4. The catch block
executes with the same labels and capabilities as the security method. A security
method may explicitly catch specific exception types (e.g., an arithmetic exception
caused by a potential divide by zero in Figure 4) and use the ellipsis syntax to catch
all other exceptions (equivalent to a catch block that catches any Throwable). The VM
suppresses other types of exceptions inside a security method that are not explicitly
caught inside the security method, including exceptions within the catch block. Thus,
exceptions cannot escape a security method. The VM continues execution after the
security method.

A major benefit of security methods is that they limit the amount of analysis neces-
sary to restrict implicit information flows. Figure 6 includes an attempt to create an
implicit flow. This security method code tries to leak the value of secret variable o.H,
which it may not declassify, by deliberately creating an exception when it attempts
an illegal explicit flow to the variable L. A thread might attempt to register an excep-
tion handler outside of the security method that would learn the value of o.H based on
whether an exception occurred. This attack will not work because the VM will suppress
any exceptions from leaving a security method.

To prevent information leaks, recall that security methods also cannot return a value
unless they have an empty secrecy label (Section 5.2). Thus, security exceptions inside
a secret security method cannot be reflected in the return value. A security method
that has an empty secrecy label but a nonempty integrity label may return a value.
If such a nonsecret security method incurs a security exception, the return value will
either be set by the catch block or will be the default value for the return type.

Alternatively, a VM prototype could permit security methods to be simple blocks, as
we proposed initially, called security regions [Roy et al. 2009]. Security regions must exit
via fall-through control flow. Security regions cannot use break, return, or continue to
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Fig. 7. Leaking data via a termination chan-
nel. Runtime values of labels and capabil-
ity sets are inlined for clarity.

Fig. 8. Leaking data via a single-threaded timing chan-
nel. Runtime values of labels and capability sets are
inlined for clarity.

exit, except in the trivial case where the control flow will continue at the statement
that immediately follows the security region.

Laminar thus eliminates implicit flows by hiding the control flow of a security method
from code outside of the security method. In Figure 4, code outside the security method
cannot distinguish an execution where o.H is true from one where it is false. In contrast,
DIFC systems that rely on static analysis prevent these flows by detecting them during
compilation [Myers and Liskov 1997]. To prevent implicit flows, dynamic DIFC systems
generally either restrict the programming model, which we have done, or adopt a
hybrid of static and dynamic analysis [Chandra and Franz 2007; Nair et al. 2008;
Venkatakrishnan et al. 2006].

6.5. Timing and Termination Channels

In addition to explicit and implicit flows, an adversary may try to leak information
covertly through timing and termination channels [Lampson 1973]. A timing channel
attempts to leak information based on how long a piece of code executes. A termination
channel is a special timing channel that leaks information by executing in an infinite
loop depending on a secret value. We do not eliminate all timing and termination
channels for multithreaded programs, but we discuss potential solutions that minimize
their bandwidth.

Termination Channels. Figure 7 shows an example of a termination channel that
attempts to leak secret information based on whether the application terminates. If
control returns from this security method, then unprivileged code can learn that o.H is
false. Similarly, a colluding application might learn that o.H is true if the application
appears to hang.

No general-purpose DIFC system can ensure termination of a program (or, in Lam-
inar’s case, a security method). The primary goal in dealing with termination chan-
nels is preventing a deterministic or high-bandwidth channel. OS-based systems can
suppress termination notification [Efstathopoulos 2008; Krohn et al. 2007; Zeldovich
et al. 2006] and thereby eliminate termination channels. Even this approach arguably
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Fig. 9. A timing channel attack that with high probability prints L with the same value as the secret H.
Runtime values of labels and capability sets are inlined for clarity.

creates some disruption in the CPU scheduling that might create a channel that is
noisy and thus difficult to exploit.

In a language-level system like Laminar, untrusted code placed after a security
method can detect whether a security method has terminated. A number of solutions
have been explored in the literature, surveyed by Kashyap et al. [2011]. One option is
to use static analysis to identify the labels of all variables used to make control flow
decisions and only permit the code to execute if it can declassify these labels [Chandra
and Franz 2007; Liu et al. 2009] or to restrict the programming model to forbid using
a secret value as a conditional variable [Volpano and Smith 1999]. Another option is
to partition and schedule the code based on labels [Kashyap et al. 2011]. A final option
is to bound the maximum execution time of sensitive code [Askarov et al. 2010; Tiwari
et al. 2009a] and return control to the untrusted code even if the sensitive code has not
completed.

For Laminar, the most attractive approach to termination channels is simply bound-
ing the execution time of a security method. If the maximum execution time (perhaps
specified by the programmer) is exceeded, a security exception would be generated.
Control would be transferred to the catch block, permitting the secure code to clean up
(again for a bounded period) and then return to the unlabeled thread. This approach
would prevent security methods from leaking data based on termination by artificially
forcing all security methods to terminate.

Timing Channels. Similarly, a timing channel can leak information based on the
execution time of a security method (or other privileged code in a different DIFC
system). Figure 8 shows a timing channel that artificially delays execution based on
the value of secret variable o.H. This sort of channel can be created even with a single
thread by recording the time before and after execution.

In practice, these timing and termination channels have been low bandwidth and are
difficult to exploit—especially in single-threaded applications. However, multithreaded
applications are more vulnerable to these exploits because more threads can synchro-
nize the order in which they execute a security method, which is then visible outside
the security methods. Figure 9 illustrates a timing channel where threads artificially
delay the length of security method execution based on the value of secret variable o.H.
Even though neither security method explicitly leaks anything or fails to terminate,
the execution time orders the execution of updates to the static variable L, thus leaking
the value of H with high probability, but somewhat slowly.

Figure 10 shows a more subtle attack that efficiently and deterministically leaks one
bit of information per security method execution. In this example, signal is a variable
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Fig. 10. Leaking information via synchronization and timing. Runtime values of labels and capability sets
are inlined for clarity.

with empty labels. If the secret, H, is 1 then Thread 2 gets into a while loop until
Thread 1 exits its security method and sets the value of signal to 1. Thus, at the end
of the security method, the value of signal is the same as that of secret H. A variant
of this attack is also possible with only one thread in a security method and a second
thread sleeping and then writing to signal.

We observe that the attacker in Figure 10 increases the bandwidth of timing chan-
nels by leveraging a data race on a signal variable. It is likely that the bandwidth of
some timing attacks in a dynamic DIFC system like Laminar could be reduced if the
program were known to be Data Race Free (DRF). Relying on programmers to write
DRF programs is straightforward but will fail to prevent attacks if programmers make
mistakes. Guaranteeing DRF through language design and type checking would pro-
hibit data races but requires programmer effort [Boyapati et al. 2002]. Alternatively,
the memory model could be strengthened so that synchronization-free regions appear
to execute atomically [Ouyang et al. 2013]. We note that even DRF programs can still
include timing channels, such as the one in Figure 8. Previous work has demonstrated
how a language-based DIFC system can reduce or eliminate timing channels in multi-
threaded programs by requiring data race freedom and that all traces of accesses to
public or low-secrecy variables are not influenced by secret inputs [Huisman et al. 2006;
Zdancewic and Myers 2003]. In general, locks for variables that are accessed across
multiple labels must be acquired in code with the lowest secrecy and highest integrity.
Since correct lock acquisition complicates the programming model, we leave further
investigation to future work.

Recent work [Askarov et al. 2010; Askarov and Myers 2012; Zhang et al. 2011]
provides an alternative promising approach to mitigating timing channels in language-
based systems by (1) predicting the expected runtime of a security-sensitive method,
(2) ensuring that every instance runs at least this long by delaying the return, and
(3) if the prediction is exceeded, increasing the prediction for future instances. This
predictive mitigation strategy substantially limits the ability of an attacker to create
a timing-based implicit flow.

A variant of timing-based mitigation could be adopted by Laminar, in which program-
mers specify the execution time of a security method, plus some epsilon for imprecision
in the runtime system. Fixing execution time would address both timing and termina-
tion channels, and we expect that this would be robust to synchronization-based timing
attacks. We leave a formal treatment of this approach in the presence of concurrency
to future work.
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Fig. 11. An attempt to use thread capabilities as a storage channel. Runtime values of labels and capability
sets are inlined for clarity. Based on the value of H, the thread tries to permanently drop a capability.
Laminar prevents this leak by ensuring programs only make permanent capability changes outside of a
security method.

6.6. Capability Management

Laminar adds a set of capabilities to each thread that persist across security methods.
A critical concern is to ensure that the capability set not be used to create a storage
channel to leak information. To avoid this, we treat a thread’s capability set as a
nonsecret, trusted variable, and any tag creation or deletion is an explicit, mediated
information flow. Because we trust the JVM to manipulate the capability set correctly,
the capability set’s integrity label is treated as � inside of a security method, and we
permit threads to read the capability set outside of a security method.

Figure 11 illustrates how such an attack might be attempted otherwise. The attacker
thread initially creates a disposable capability for tag l, in Label L. Inside one security
method, the thread drops l based on the value of secret o.H and later tries to use
the capability (implicitly) in another security method to create a labeled directory. The
thread does possess the C(l−) to declassify any data protected by l, which should create
a public output if it is successful. In this attack, the value of o.H determines whether
the thread drops the C(l−) capability, which determines whether the thread can create
a directory with an irrelevant tag in its label. The untrusted code can see whether the
directory exists and learn the value of o.H. In this example, the thread is essentially
using the thread’s capability set as a storage channel to leak a secret value.
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Fig. 12. A potential “confused deputy” when managing capabilities in an untrusted thread. Runtime values
of labels and capability sets are inlined for clarity.

To prevent such a leak in Laminar, threads may only drop a capability either (1) out-
side of a security method or (2) in a security method with an empty secrecy label.
Essentially, dropping a capability is a write to the thread’s capability set, which has
an empty secrecy label. Thus, this operation must be treated as an explicit write and
mediated appropriately.

Capabilities and Confused Deputies. One problem with threads that dynamically
assign capabilities to security methods is that a bug in the untrusted thread code can
inadvertently give a security method an inappropriate capability. Figure 12 shows a
“confused deputy” [Hardy 1988] variant of the calendar example. The server thread
accidentally gives Bob’s declassifier Alice’s declassification capability. Perhaps realizing
the mistake, Bob copies Alice’s entire calendar into his calendar—a legal information
flow.

Dynamic capability management was a design decision made in the interest of pro-
grammability. Unfortunately, as it stands, this choice increases the auditing burden on
the security method developer. Not only must Alice audit her own security methods,
she must audit the capability management code of threads that hold her declassifi-
cation capability. Capabilities are Alice’s primary credentials in Laminar, so it is not
surprising that capability management code requires a security audit. In some cases, it
might be possible to trade auditing capability management code for auditing all secu-
rity methods that a thread may call. However, that set might be difficult to determine
statically, and it might include dynamically loaded methods and methods written by
other users.

To mitigate some of the risks of accidentally passing capabilities to the wrong secu-
rity method, especially in the presence of inheritance of standard methods, capabilities
must be explicitly passed to endorsing and declassifying security methods. Moreover,
security methods receiving capabilities must be marked as final, thus disabling in-
heritance. For security methods that manipulate labeled data without label changes,
no capabilities need be passed to the method. When a security method is not explic-
itly passed capabilities, the thread’s capability set will be temporarily assigned to the
empty set for the duration of the security method.

When a security method calls a function, its capabilities are not passed to this
function unless the function is a nested security method that is explicitly passed
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capabilities as arguments. This restriction reduces the risk of unexpected informa-
tion flows through a third-party library.

An alternative design could allow Alice to map her capability to a hash of specific
security methods, either in addition to or instead of thread capabilities. Such a mapping
of capabilities to a security method alleviates the need to audit any code outside of the
security method. We leave development of such a mechanism for future work.

7. LIMITATIONS

Although Laminar regulates explicit information flows and hides control flow within
a security method to prevent implicit flows, it is prone to attacks that exploit covert
channels. For example, in the case of dynamic class loading, a user can query the VM to
determine if a class has been loaded and use this additional information to leak sensi-
tive data. In multithreaded programs, attackers may collude and use timing channels
to leak information. We propose to mitigate these timing channels by fixing the exe-
cution time of a security method (Section 6.5). Such channels could also be mitigated
by restricting the behavior of the scheduler [Sabelfeld and Myers 2003]. Laminar as-
sumes that code blocks enclosed inside security methods always terminate. Otherwise,
as explained in Section 6.4, information can leak through termination channels.

The Laminar prototype trusts Java Native Interface (JNI) code that is included as
part of the JVM. It does not track information flow through JNI code and does not allow
third-party JNI modules. A production JVM could track the information flow through
correct JNI code because the JNI specification requires C and Java to use separate
heaps. The required copying of input and output data could serve as a natural point at
which to check labels. We note that, as an optimization, many JVM implementations
do give the C code pointers into the Java heap. This optimization must be disabled.
A deeper concern is protecting against untrusted, user-provided JNI code. Because
C is not memory safe, a malicious JNI module could guess or otherwise discover the
location of JVM-internal bookkeeping. Protecting the JVM from untrusted JNI code
would require a sandboxing technique, such as running the JNI in a separate address
space, and is beyond the scope of our work.

In general, the implementation could handle Java reflection calls by intercepting
them and handling them like normal calls for the purposes of Laminar’s security checks.
The implementation could similarly handle calls to sun.misc.Unsafe methods, which
perform raw memory accesses, by instrumenting the methods to perform Laminar’s
checks. However, the prototype currently ignores these cases.

There is, however, a specific concern with combining reflection, multithreading, and
file descriptors to create a covert channel. For instance, one could conditionally create
a secret file inside of a security method, which influences the assigned file descriptor to
file or socket creation outside of a security method, leading to a covert channel. This risk
is only introduced when threads with different labels share a file descriptor table. The
current Laminar prototype blocks this attack by relying on the fact that file descriptor
values are hidden from the application in the FileInputStream and FileOutputStream
classes without reflection or sun.misc.Unsafe. Thus, care would need to be taken in
allowing an application to directly interact with the file descriptor table.

The current implementation of Laminar does not allow application developers to
read object labels, which may be useful for debugging. It is possible that some degree
of visibility into object labels could be given to developers without creating new covert
channels, but we leave this issue to future work.

The current implementation of Laminar treats static variables as unlabeled instead
of associating labels with them (Section 5.3). Since most programs use statics infre-
quently, an improved implementation could track their labels without affecting the
performance results.
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Fig. 13. Laminar VM overhead on programs without security methods.

As described in Section 3.8, the Laminar design does not trust javac to implement
any DIFC enforcement but does trust javac to correctly compile the Java source to
bytecode. Our prototype does not include a bytecode verifier, which could detect and
reject invalid bytecode. Thus, the prototype Laminar VM trusts that bytecodes con-
form to the specification. A production Laminar VM implementation would include a
bytecode validator.

The Laminar design requires security code to be written as methods, in order to
simplify the enforcement of information flow rules on local variables (Section 5.2). With
additional static analysis, it is possible that security code could be arbitrary, lexically
scoped regions, as originally proposed [Roy et al. 2009]. After experimenting with a
number of variations on the design, our experience is that restricting security code to
methods strikes the best balance among programmability, security, and efficiency.

Finally, several restrictions on the programming model are not currently checked in
the Laminar VM runtime system but would be implemented in a production system.
Rather, we require programmers to adhere to these restrictions and manually enforce
them in our application studies. Specifically, the Laminar JVM prototype does not
currently enforce input and output restrictions to security methods, enforce restrictions
on labeled allocation, or restrict that security methods that accept capabilities are
declared final. The VM could easily enforce all of these rules at runtime, and the JIT
compiler could use static analysis to enforce some of them as well.

8. LAMINAR PERFORMANCE

This section reports the performance overheads incurred by adding Laminar to Jikes
RVM and Linux. We conducted these experiments on a quad-core Intel Xeon 2.83GHz
processor with 4GB of RAM. We configure Jikes RVM to run on four cores. The VM’s
heap is configured with a maximum size of 1,024MB. All results are normalized to
values obtained on unmodified Linux 2.6.22.6 and Jikes RVM 3.0.0. We measured
Laminar’s overhead on standard Java benchmarks without security methods to be less
than 10% using static barriers specific to code outside security methods. We measured
Laminar OS overhead on lmbench, a standard OS benchmark, to be less than 8% on
average.

8.1. JVM Overhead

Figure 13 shows the overhead of Jikes RVM with the Laminar enhancements on the
DaCapo Java benchmarks [Blackburn et al. 2006], version 2006-10-MR2, and a fixed-
workload version of SPECjbb2000 called pseudojbb [Standard Performance Evaluation
Corporation 2001]. Because compilation decisions are nondeterministic, running times
vary, so we execute 25 trials of each experiment and take the mean.
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Table IV. Execution Time in Microseconds of Several lmbench OS
Microbenchmarks on Linux with Laminar

Benchmark Linux Linux w/ Laminar % Overhead
stat 0.92 0.94 2.0
fork 96.40 97.00 0.6
exec 300.00 302.00 0.6
0k file create 6.29 6.56 4.0
0k file delete 2.54 2.68 6.0
mmap latency 6,877.00 7,035.00 2.0
prot fault 0.24 0.26 7.0
null I/O 0.13 0.17 31.0

These bars represent two sets of runs, one with dynamic barriers and one with only
static barriers. The darker bar shows the overhead of dynamic barriers, which check
dynamically if they are in a security method as well as performing the secrecy and
integrity checks as appropriate. Dynamic barriers add 23% overhead on average. The
lighter bar is the overhead of using static barriers, which only do the appropriate per-
object DIFC checks. This overhead is 9.7% on average. As discussed in Section 5.1, a
mature implementation of Laminar would use method cloning to eliminate dynamic
barriers. Because method cloning has comparable overheads to static barriers, code
outside of a security method is expected to have an average overhead of 9.7%. This result
is consistent with Blackburn and Hosking’s measurements of barriers [Blackburn and
Hosking 2004].

8.2. OS Overhead

We use the standard lmbench [McVoy and Staelin 1996] system call microbenchmark
suite to measure the overheads imposed on unlabeled applications when running on
Laminar OS. A selection of the results is presented in Table IV.

In general, the overhead of the Laminar OS modifications are less than 8%, which
is similar to previously reported overheads for Linux security modules [Wright et al.
2002]. The only performance outlier is the “null I/O” benchmark, which has an overhead
of 31%. This benchmark represents the worst case for Laminar because the system call
does very little work to amortize the cost of the label check. As a comparison, Flume
adds a factor of 4-35× to the latency of system calls relative to unmodified Linux [Krohn
et al. 2007].

9. APPLICATION CASE STUDIES

This section describes four case studies (GradeSheet, Battleship, Calendar, and
FreeCS) and how we retrofitted these applications with DIFC security policies.
GradeSheet implements a database with security policies for entering and reading
grades by professors, TAs, and students. Battleship is a two-player game that keeps
secrets about ship locations. Calendar manages multiple users calendars and arranges
meeting times, similar to our running example. FreeCS is a chat server that imple-
ments security policies on group memberships and invitations. For each benchmark, we
describe in more detail its functionality, modifying and retrofitting its security policies,
and its performance.

Table V summarizes application details. All of the retrofitted applications implement
more powerful security policies than their unmodified counterparts, yet all modifica-
tions add at most 10% to the source code. We list the lines of code statically within
a security method, which is under 7% of the total lines of code. This count does not
include code in methods called by a security method (e.g., library methods) that do not
implement security policies.
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Table V. Application Characteristics

Application LOC Protected Data Added LOC (%) SM LOC (%) % time in SMs
GradeSheet 900 Student grades 92 (10%) 62 (6.9%) <1%
Battleship 1,700 Ship locations 95 (6%) 57 (3.4%) 18%
Calendar 6,200 Schedules 290 (5%) 189 (3.0%) 1%
FreeCS 22,000 Membership properties 1,200 (6%) 80 (0.4%) <1%
Lines of code (LOC), security sensitive data, Laminar specific LOC we added, LOC inside a Security
Method (SM) statically (excluding code called by an SM), and percent time in security methods.

Fig. 14. Overhead of executing applications retrofitted with Laminar.

Figure 14 breaks down into four parts the overheads added by securing them using
Laminar. Start/end SM is the overhead of application modifications to support DIFC,
including starting and ending security methods and security operations, such as copy-
AndLabel. The Alloc barriers configuration denotes the time overhead for allocating
labeled objects and assigning their label sets. The Static barriers configuration is the
overhead from read and write barriers when the security context is known at com-
pile time. Finally, the Dynamic barriers configuration is the overhead from barriers
that check context at runtime. We note that GradeSheet and Battleship run correctly
with static barriers, but Calendar and FreeCS require dynamic barriers because some
methods are called from both inside and outside security methods. As discussed in
Section 5.1, method cloning would obviate the need for dynamic barriers, and we thus
expect that in practice overhead will match the overhead of Static barriers.

In all our experiments, we disabled the GUI, as well as other I/O and network-
related operations, so that the Laminar overheads are not masked by them. Hence,
the slowdown in deployed applications would be less than what is reported in our
experiments. In particular, when we wait for the Battleship game to draw the GUI
between scripted moves in the test cases, the measured Laminar overhead drops to 1%.
For comparison, Flume [Krohn et al. 2007] adds 34–43% slowdown on the MoinMoin
wiki application. Flume labels data at the granularity of an address space and cannot
enforce DIFC rules on heterogeneously labeled objects in the same address space.

9.1. GradeSheet

GradeSheet is a small program that manages the grades of students [Birgisson et al.
2008]. GradeSheet has three types of end users: professors, TAs, and students. The
main data structure is a two-dimensional object array GradeCell. The (i, j)th object
of GradeCell stores the information about student i and her grades on project j. A
sample policy states that (1) the professor can read/write any cell, (2) the TA can read
the grades of all students but only modify the ones related to the project that she
graded, and (3) students can only view their own grades for all projects.

Table VI shows how to express this policy by assigning labels and capabilities to the
data and the threads working on behalf of each type of user, respectively. Specifically,
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Table VI. GradeSheet Security Sets for Objects and Threads Serving
End Users, where S Is Secrecy, I Is Integrity, and C Is Capability

Name Security Set
GradeCell (i,j) S = 〈si〉, I=〈pj〉
Student (i) C = 〈s+

i , s−
i 〉

TA (j) C = 〈⋃i=n
i=1 s+

i , p+
j , p−

j 〉
Professor C = 〈⋃i=n, j=m

i=1, j=1 (s+
i , s−

i , p+
j , p−

j )〉

we guard the (i, j)th entry in the GradeCell with the secrecy tag si and the integrity tag
pj . Each student i has the capabilities to add or remove si, so students can read their
own grades in any project. Each TA j has the capability to add tags si and the integrity
tag for the project that she graded (pj). This tag ensures that TAs can read the grades
of all students, but the integrity constraint prevents them from modifying grades for
projects that they did not grade.

Interestingly, Laminar found an information leak in the original policy. The policy
allowed a student to calculate and read the average grades in a project, which leaks
information about the grades of other students. Using Laminar, we specified that only
the professor is allowed to calculate the average and declassify it.

Our experiments measure the time taken by the server to process a mix of queries by
the TA. Overall, the queries are 72% writes and 28% reads, including reads of student
ID and average grade, and reads and writes of student grades. The Laminar-enabled
version has a 7% slowdown compared to the unmodified version.

9.2. Battleship

Battleship is a common board game played between two players. Each player secretly
places her ships on the grid in her board. Play proceeds in rounds. In each round,
a player shoots a location on the opponent’s grid. The player who first sinks all the
opponent’s ships wins the game.

We modified JavaBattle,5 a 1,700-line Battleship program available on SourceForge.
Each player Pi allocates a tag pi and labels her board and the ships with it. The
capability p−

i is not given to anyone else, ensuring that only the player can declassify
the locations of her ships. In the original implementation, players directly inspect the
coordinates of a shot to determine whether it hit or missed an opponent’s boat. Under
Laminar, each player sends her guess to her opponent, who then updates his board
inside a security method. The opponent then declassifies whether the guess was a hit
or a miss and sends that information back to the first player. We added fewer than 100
lines of code to secure the program to run with Laminar.

In our experiments, the game is played between computers on a 15×15 grid without a
GUI. Figure 14 shows that the secured version adds 56% overhead with static barriers.
The overhead is high because the benchmark spends a substantial portion of its time of
its time (18%) inside security methods. In a deployed Battleship, which would display
the intermediate state of the board to the players, the overhead is significantly less. In
an experiment where we displayed the shot location after each move, the runtime of
the application increases significantly, and Laminar overhead drops to 1%.

9.3. Calendar

We modified k5nCal,6 a multithreaded desktop calendar that provides a graphical in-
terface and allows users to subscribe to multiple external iCalendar-based calendars. It

5http://sourceforge.net/projects/javabattle/.
6http://k5ndesktopcal.sourceforge.net.
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has different threads for rendering the GUI, importing calendar files, and periodically
fetching updates from remote calendars. Our modifications provide similar functional-
ity as in the examples from earlier in this article. We label all data structures and .ics
files that store a user’s calendar information with the user’s secrecy tag. We wrap all
functions that access private calendar data inside security methods, including a sched-
uler that finds available meeting times for multiple users. In the original program, a
user could view the calendar of other users, a feature we disabled.

Our experiments measure the time to schedule a meeting, which includes reading the
labeled calendars of Bob and Alice, finding a common meeting date, and then writing
the date to another labeled file that Alice can read. The scheduling code executes in
a thread that has the capabilities to read data for both Alice and Bob, but can only
declassify Bob’s data. The output file is protected by Alice’s secrecy tag. Our experiment
schedules 1,000 meetings. Figure 14 shows that the secured version of Calendar runs
6% slower than unmodified Calendar.

We note that a substantial portion of the time in the calendar application is spent
on internal thread creation and management, and even more time would be spent
rendering a GUI if we had not disabled this feature. For comparison, we lifted the
scheduling code out of the rest of the application and wrote a microbenchmark that
scheduled appointments in a tight loop on a single thread. In this case, the percentage
of time in security methods increased to 71%, and the total overhead was 77%. In
practice, we expect things like user interaction and thread management to dominate
execution time, thus minimizing the impact of security methods.

9.4. FreeCS Chat Server

FreeCS7 is an open-source chat server written in Java. Multiple users connect to the
server and communicate with each other. FreeCS supports 47 commands, such as creat-
ing groups, inviting other users, and changing the theme of the chat room. The original
security policy consists of an authorization framework that restricts what commands
can be used by a user. All these policies are written in the form of if..then checks.
These authorization checks are actually checks on the role of a user. For example, a
user who is in the role of a VIP and has superuser power on a group can ban another
user in the group.

We improve the security code in FreeCS by labeling sensitive data structures and
accessing them inside security methods. We made most of our modifications in two
classes—Group and User. We localized all security checks by adding security methods
to these classes. The abstraction of a role maps naturally onto integrity labels. For
example, we protected the banList data structure with two tags, one that corresponds
to the notion of VIP and the other for the group’s superuser. Now, only users who
have the add capability for these two tags can use the ban command. We modified
the authentication module to assign each user either the VIP capability, superuser
capability, or no enhanced capability when she logs in. The authentication module is
trusted to manage the VIP and superuser capabilities. Our experiments measure the
time to process requests from 4,000 users, each invoking three different commands.
Laminar’s overhead is 5% (Figure 14).

9.5. Summary

The four case studies reveal a pattern in the way applications are written. First, most
applications have only a few key data structures that need to be secured, like the ar-
ray of student grades in GradeSheet or the playing boards in Battleship. Second, the
interface to access these data structures is quite narrow. For example, InternalServer

7http://freecs.sourceforge.net.
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in GradeSheet and DataFile in Calendar contain the functions used to access the im-
portant data. These observations support our hypothesis that Laminar requires only
localized and modest changes to add DIFC security to many types of applications.
Third, most of the data structures require heterogeneous labeling—the single array
data structure GradeCell has different labels corresponding to different students. Het-
erogeneous labeling is impractical in OS-based systems [Krohn et al. 2007; Vandebog-
art et al. 2007; Zeldovich et al. 2006] because they support a single label on the whole
address space or require the programmer to map application data structures onto la-
beled pages. The Laminar VM easily solves this problem with fine-grained tracking
of labels on the data structure, for example, individual array elements and objects in
GradeSheet.

An open question is the how this approach will scale to larger applications. Our
experience with Laminar is that the performance overheads are primarily determined
by the amount of code that executes inside a security method and that developer effort is
a function of how many declassification or endorsement points the code requires, rather
than the amount of data the program secures. The case studies presented here had
natural and simple endorsement and declassification points, which were close to the
actual uses of labeled data—minimizing overheads and effort. For larger applications,
this trend may continue. However, it is possible that larger applications may instead
require a larger portion of code in security methods to manipulate labeled data or that
more substantial refactoring may be required to minimize the code that must execute
in a security method. We leave larger application case studies for future work.

10. RELATED WORK

Previous DIFC systems have either used only PL abstractions or OS abstractions.
Laminar instead enforces DIFC rules for Java programs using an extended VM and
OS. By unifying PL and OS abstractions for the first time with a seamless labeling
model, Laminar combines the strengths of previous approaches and further improves
the DIFC programming model. Table VII summarizes the taxonomy of design issues
common to DIFC systems, ranging from the trusted code base, security guarantees,
resource granularity, to threats, all addressed in more detail here.

From IFC to DIFC. Information Flow Control (IFC) stemmed from research in multi-
level security for defense projects [Department of Defense 1985]. In the original military
IFC systems, an administrator must allocate all labels and approve all declassification
requests [Karger et al. 1991]. Modern Mandatory Access Control (MAC) systems, like
security-enhanced Linux (SELinux), also limit declassification and require a static col-
lection of labels and principals. DIFC systems provide a richer model for implementing
security policies in which applications allocate labels and assign them to data and
declassify [Myers and Liskov 1997].

Static DIFC analysis. Many language-based DIFC systems augment the type system
to include secrecy and integrity constraints enforced by the bytecode generator [Myers
1999; Myers et al. 2001; Simonet and Rocquencourt 2003]. These systems label program
data structures and objects at a fine granularity but require programming an intrusive
type system or in an entirely new language. These language-based systems trust the
whole OS and provide no guarantees against security violations on system resources,
such as files and sockets.

Hybrid DIFC enforcement. A key strength of static analysis is that static anal-
ysis tends to be the most robust language-level defense against implicit channels
(Section 6.4). Purely dynamic systems generally cannot effectively regulate implicit
flows. As a result, a number of primarily dynamic JVM systems have augmented
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Table VII. High-level Approaches to DIFC Implementation

Issue PL solutions OS solutions PL & OS solution
[Arden et al. 2012; Chandra
and Franz 2007; Liu et al.
2009; Myers et al. 2001;
Simonet and Rocquencourt
2003]

Asbestos [Efstathopoulos
2008; Vandebogart et al.
2007], HiStar [Zeldovich
et al. 2006], Flume
[Krohn et al. 2007]

Laminar

Modified Compiler & type system
([Arden et al. 2012; Liu et al.
2009; Myers et al. 2001;
Simonet and Rocquencourt
2003]) or JVM and bytecode
compiler ([Chandra and
Franz 2007])

(1) Complete OS or (2)
User-level reference
monitor & kernel module

VM and kernel module

Trusted Compiler, VM, & OS OS VM & OS
Fine-grained information flow tracking?

Interprocedural static
analysis or JVM
instrumentation

Either not supported or
inefficient because of
page table mechanisms

Dynamic VM
enforcement via inserted
read/write barriers

Secure files & OS resources?
Can label file handles in the
application and add dynamic
checks to system calls, but
limited visibility into OS to
validate these assumptions.

(1) Modify entire OS or
(2) User-level reference
monitor & kernel

Kernel

Implicit
flows?

Static analysis, combined
with dynamic checks in some
cases [Arden et al. 2012;
Chandra and Franz 2007;
Liu et al. 2009].

Not applicable—tracks
information flow at
thread or address space
granularity

Security method design
restricts visibility into
control flow from outside
the security method.

Termination, probabilistic, and timing channels?
Predictive Mitigation
[Askarov et al. 2010;
Askarov and Myers 2012;
Zhang et al. 2011]

HiStar, Flume, &
Asbestos suppress
termination notification

Not handled

Laminar combines aspects of PL and OS solutions, and innovates in dynamic flow tracking.

dynamic enforcement of explicit flows with static analysis for implicit flows (thus called
a Hybrid DIFC system).

Chandra and Franz develop a version of the JVM that enforces information flow con-
trol policies on unmodified Java programs [Chandra and Franz 2007]. Like Laminar,
this JVM combines static analysis on Java bytecode with dynamic analysis. Security
policies are expressed externally—such as restricting how sensitive data may exit the
program. This system relies on whole-program, side-effect analysis to restrict implicit
flows by labeling the program counter. Moreover, this system does not address threads
and allows implicit flows through uncaught exceptions. Finally, the dynamic analysis
in this system is relatively expensive, 23–159%, whereas Laminar’s reported applica-
tion overheads are 5–56%. Laminar’s security methods instead strike a balance that
minimizes programmer effort but substantially limits the scope and overhead of static
and dynamic analysis.

Trishul adopts a similar design as Chandra and Franz, but better handles implicit
flows through caught exceptions via static analysis [Nair et al. 2008]. Trishul does not
handle uncaught runtime exceptions, such as divide by zero. Trishul relies on a con-
servative global program counter secrecy label when static analysis cannot prevent an
implicit flow, such as when referencing certain object reference fields. This abstraction
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is prone to “label creep,” and programmers must manually remove labels according to
application security policies. The performance overhead of Trishul varies and tends
to be highest on object manipulation and lowest for system calls. For a prime num-
ber benchmark, the overhead is 167% [Nair 2009]. A key contribution of Laminar is
a highly optimized JVM design, as well as a judicious and programmable abstraction
selection that keeps overheads low.

The Laminar VM prevents implicit flows instead by restricting how control can
return from a security method—a property that can be checked dynamically. Arguably,
some restrictions could be relaxed with additional static analysis. Although Laminar
does not rely on static analysis for safety, it does employ some analysis during JIT
compilation to optimize security checks (Section 5.1) and could be considered a hybrid
DIFC system.

OS IFC. Asbestos [Vandebogart et al. 2007] and HiStar [Zeldovich et al. 2006] are
new OSs that provide DIFC properties. Flume [Krohn et al. 2007] is a user-level ref-
erence monitor that provides DIFC guarantees without making extensive changes to
the underlying OS. These OS DIFC systems provide little or no support for track-
ing information flow through application data structures with different labels. Flume
tracks information flow at the granularity of an entire address space. HiStar enforces
information flow at page granularity and supports a form of multithreading by forc-
ing each thread to have a page mapping compatible with its label. Using page table
protections to track information flow is expensive, both in execution time and space
fragmentation, and complicates the programming model by tightly coupling memory
management with DIFC enforcement. Laminar supports a richer, more natural pro-
gramming model in which threads may have heterogeneous labels and access a variety
of labeled data structures. For example, all of our application case studies use threads
with different labels.

Laminar provides DIFC guarantees at the granularity of methods and data struc-
tures with modest changes to the VM. It also adds a security module to a standard
operating system, as opposed to Asbestos and HiStar, which completely rewrite the
OS. Most of Laminar’s OS DIFC enforcement occurs in a security module whose archi-
tecture is already present within Linux (LSMs) [Wright et al. 2002]). The Laminar OS
does not need Flume’s endpoint abstraction to enforce security during operations on
file descriptors (e.g., writes to a file or pipe) because the kernel-level reference monitor
can check the information flow for each operation on a file descriptor.

Laminar adopts the label structure and the label/capability distinction derived from
Jif and used by Flume. Capabilities in DIFC systems are distinct from capability-
based operating systems, such as EROS [Shapiro et al. 1999]. These systems use
pointers with access control information to combine system and language mechanisms
for stronger security but use a centralized IFC model, rather than the richer DIFC
model. Thus, capability systems cannot enforce DIFC rules, and programs must be
completely rewritten to work with the capability programming model.

Integrating language and OS security. Hicks et al. observe that security-typed lan-
guages can ensure that OS security policies are not violated by trusted system applica-
tions, such as logrotate [Hicks et al. 2007]. Their framework, called SIESTA, extends
Jif to enforce SELinux [Loscocco and Smalley 2001] MAC policies at the language level.
The aims of Laminar and SIESTA are orthogonal. SIESTA provides developers with a
mechanism to prove to the system that an application is trustworthy, whereas Laminar
provides the developer a unified abstraction for specifying application security policies.

Implicit information flows. Implicit information flows can leak secret data based on
program control flow, as when a conditional statement is based on the value of a secret

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.



4:46 D. E. Porter et al.

variable. DIFC systems based on static analysis can identify when labeled variables
can influence control flow and use this information to label the program counter of
the function [Chandra and Franz 2007; Liu et al. 2009]. In other words, a function
with a secret program counter label may not be called by a function with an unlabeled
program counter.

Venkatakrishnan et al. develop a framework that statically transforms program code
in a simple procedural language into a form that can detect implicit flows at runtime
[Venkatakrishnan et al. 2006]. Their model essentially adds explicit assignments to a
program counter variable in the code at all conditional statements and procedure calls
and catches illegal flows at runtime. This model is applied in the context of IFC and
noninterference and has not been extended to DIFC or concurrency.

Le Guernic proposes an automaton-based information flow model and type system
that uses static analysis to identify potential implicit flows [Guernic 2007]. Unlike
other systems, this model also identifies synchronization events in threaded systems
and imposes additional restrictions at runtime around conditional statements. These
restrictions include requiring that locks be acquired before any conditional is evaluated
based on a secret variable and executing statements within certain conditionals atomi-
cally. Unlike many IFC systems, this design avoids termination channels on failures by
suppressing individual lines of code that might cause an implicit flow. Laminar adopts
a similar approach to securing concurrency by limiting the possible interleavings of
security methods.

Shroff proposes a dynamic monitor and type system that can prevent implicit flows
either with the help of a static type analysis, which can be overly conservative in some
cases, or by learning the implicit flows in repeated executions [Shroff et al. 2007]. In the
dynamic-only mode, the system records the explicit flows within all taken branches. In
subsequent executions, if a different branch is taken, the recorded flows of previous ex-
ecutions are used to identify potential implicit flows. In dynamic mode, this system can
permit some number of leaks before converging on a tight approximation of secure rules.

Fabric and Mobile Fabric add additional checks, both static and dynamic, to prevent
additional implicit flows in distributed and federated systems, respectively [Arden et al.
2012; Liu et al. 2009]. For example, loading a class from a remote server may indicate
that a secret code took a certain execution path. The Fabric systems add additional
labels and checks to prevent these flows.

Laminar restricts implicit information flows by restricting how exceptional control
flow returns from a security method. OS DIFC systems generally do not need to address
implicit flows because DIFC is enforced at process granularity, which hides control flow
within the process by design.

Asymmetric behavior for secrecy and integrity. In general, DIFC systems treat secrecy
and integrity as duals. As a result, the bottom of the label lattice, or least-restricted
data, is public and trusted. In Laminar, most application code and data are untrusted
and have an empty label. We believe this choice is appropriate for a threat model
where an adversary may have contributed code to the application, and any given policy
concern applies to a small subset of the code. As a result, however, the measures taken
to ensure secrecy and integrity are different. For instance, removing capabilities and
creating security container objects must execute outside of a security method to ensure
that the operation is public and does not leak secret information. In contrast, security
methods trusted with an integrity tag must generally sanitize public data and endorse
this input. In the worst cases, malformed public data can make the system unavailable.

Termination, timing, and probabilistic channels. Implicit flows can be combined
with termination, storage, and other features to create more powerful channels.
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Vachharajani et al. argue that implementing DIFC with dynamic checking is as correct
as static checking by showing that the program termination channels of static and
dynamic DIFC systems leak an arbitrary number of bits [Vachharajani et al. 2004].
They prove that a correct dynamic DIFC system will overapproximate information flow,
rejecting some programs that do not contain actual information flow violations. Russo
and Sabelfeld similarly prove that a purely dynamic DIFC system will reject programs
that a static analysis would not under a flow-sensitive analysis (i.e., when variables
can change labels over the course of the computation) [Russo and Sabelfeld 2010].
Russo and Sabelfeld argue that these deficiencies can be recovered in a hybrid model,
where some measure of static and dynamic analysis are combined. Laminar is a hybrid
DIFC system but relies on dynamic checks and restricting the programming model
to mitigate covert channels, and thus its security methods explicitly overapproximate
information flow.

Recent work by Zhang, Askarov, and Myers developed a predictive mitigation strat-
egy for timing channels [Askarov et al. 2010; Askarov and Myers 2012; Zhang et al.
2011]. Predictive mitigation essentially ensures that all instances of a sensitive method
run for the same length of time. If a method runs longer than expected, all future in-
stances run for the new maximum length. This strategy has been developed in static
analysis systems but could be extended to dynamic DIFC systems such as Laminar.

In general, DIFC systems attempt to eliminate covert channels, which may be used to
leak information, but do not eliminate timing channels [Lampson 1973] or probabilistic
channels [Sabelfeld and Myers 2003]. DIFC systems can eliminate some implicit flows,
as discussed in Section 6.4.

Formalizing information flow properties. Prior work has formally defined safety
properties for information flow systems, primarily in the context of a type system.
The most restrictive is noninterference [Goguen and Meseguer 1982], in which the
output of a low-security computation cannot be influenced by the values of high-
security computation. This definition precludes declassification and endorsement. In
the case of our calendar example, a calendar application that enforced noninterfer-
ence could not output a mutually agreeable meeting time. Observational determinism
is a generalization of noninterference to concurrent programs [Huisman et al. 2006;
Zdancewic and Myers 2003]. Observational determinism generally requires the pro-
gram to be DRF, as well as requiring equivalent traces of possible accesses to nonsecret
data.

An alternative safety condition is robustness [Chong and Myers 2005, 2006; Myers
et al. 2004; Zdancewic and Myers 2001]. Within the lattice of labels in the decentral-
ized label model, a robust system enforces boundaries on the ability of a principal to
influence data or read data. In other words, a robust system would not allow a principal
to expand its ability to read data based on the parts of the system it can influence. This
model incorporates declassification, endorsement, multiple and mutually distrusting
principals, and principals that can contribute and execute code.

Noninterference, observational determinism, and robustness have been applied pri-
marily to DIFC-type systems. We leave adapting a property such as observational
determinism to a dynamic DIFC system for future work.

In summary, Laminar combines the strengths of PL and OS DIFC systems. Laminar
handles implicit flows and enforces the same fine-grained information flow control poli-
cies as performed by prior PL DIFC systems but without static analysis of all program
components. Laminar enforces the same DIFC security policies on system resources
as the OS DIFC systems enforce. Laminar, however, makes it easier to deploy and use
information flow control systems by introducing security methods that encapsulate
security code and are intuitive to program.
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11. CONCLUSION

Laminar is the first DIFC system to unify PL and OS mechanisms for information flow
control. It provides a natural programming model to retrofit powerful and auditable
security policies onto existing, complex, multithreaded programs.

Although abstractions such as the security method minimize the refactoring burden
on the programmer who wishes to adopt DIFC, the implementation mechanisms, such
as dynamic policy enforcement and allowing a thread to execute methods with different
labels, introduce additional opportunities for covert channels. To prevent some covert
channels, the current Laminar implementation imposes a number of modest restric-
tions that we would like to relax in future work, such as limiting the use of static
variables and forbidding file relabeling. This future work should be driven by a formal
model of security methods that facilitates careful reasoning about security properties,
especially about covert channels that arise due to concurrency.
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D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The DaCapo benchmarks:
Java benchmarking development and analysis. In Proceedings of the 21st ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA’06). ACM, 169–190.

S. M. Blackburn and A. L. Hosking. 2004. Barriers: Friend or foe? In Proceedings of the 4th International
Symposium on Memory Management. ACM Press, New York, NY, USA, 143–151. DOI:http://doi.acm.
org/10.1145/1029873.1029891

C. Boyapati, R. Lee, and M. Rinard. 2002. Ownership types for safe programming: Preventing data races
and deadlocks. In Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’02). ACM, New York, NY, USA, 211–230. DOI:http://
doi.acm.org/10.1145/582419.582440

D. Chandra and M. Franz. 2007. Fine-grained information flow analysis and enforcement in a java virtual
machine. In Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC’07).
IEEE Computer Society, 463–475.

S. Chong and A. C. Myers. 2005. Language-based information erasure. In Proceedings of the 18th IEEE
Workshop on Computer Security Foundations (CSFW’05). IEEE Computer Society, Washington, DC,
USA, 241–254. DOI:http://dx.doi.org/10.1109/CSFW.2005.19

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.

http://doi.acm.org/10.1145/1866307.1866341
http://doi.acm.org/10.1145/1455770.1455800
http://doi.acm.org/10.1145/1455770.1455800
http://doi.acm.org/10.1145/1029873.1029891
http://doi.acm.org/10.1145/1029873.1029891
http://doi.acm.org/10.1145/582419.582440
http://doi.acm.org/10.1145/582419.582440
http://dx.doi.org/10.1109/CSFW.2005.19


Practical Fine-Grained Information Flow Control Using Laminar 4:49

S. Chong and A. C. Myers. 2006. Decentralized robustness. In Proceedings of the 19th IEEE Workshop on
Computer Security Foundations (CSFW’06). IEEE Computer Society, Washington, DC, USA, 242–256.

D. E. Denning. 1976. A lattice model of secure information flow. Communications of the ACM 19, 5 (May
1976), 236–243.

D. E. Denning and P. J. Denning. 1977. Certification of programs for secure information flow. Communications
of the ACM 20, 7 (July 1977), 504–513.

Department of Defense. 1985. Department of Defense Trusted Computer System Evaluation Criteria (DOD
5200.28-STD (The Orange Book) ed.).

P. Efstathopoulos. 2008. Policy Management and Decentralized Debugging in the Asbestos Operating System.
Ph.D. Dissertation. University of California, Los Angeles.

J. A. Goguen and J. Meseguer. 1982. Security policies and security models. In Proceedings of the IEEE
Symposium on Security and Privacy (SSP’82). IEEE Computer Society, 11–20.

G. Le Guernic. 2007. Automaton-based confidentiality monitoring of concurrent programs. In Proceedings of
20th IEEE Computer Security Foundations Symposium (CSF’07). IEEE Computer Society, 218–232.

N. Hardy. 1988. The confused deputy: (Or why capabilities might have been invented). SIGOPS Oper. Syst.
Rev. 22, 4 (Oct. 1988), 36–38.

B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel. 2007. From trusted to secure: Building and executing appli-
cations that enforce system security. In Proceedings of the 2007 USENIX Annual Technical Conference
(ATC’07). USENIX Association, 205–218.

M. Huisman, P. Worah, and K. Sunesen. 2006. A temporal logic characterisation of observational deter-
minism. In Proceedings of the 19th IEEE Workshop on Computer Security (CSFW’06). IEEE Computer
Society, Washington, DC, USA, 3. DOI:http://dx.doi.org/10.1109/CSFW.2006.6

P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn. 1991. A retrospective on the VAX VMM
security kernel. IEEE Transactions in Software Engineering 17, 11 (1991), 1147–1165.

V. Kashyap, B. Wiedermann, and B. Hardekopf. 2011. Timing- and termination-sensitive secure information
flow: Exploring a new approach. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE
Computer Society, 413–428.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. 2007. Information
flow control for standard OS abstractions. In Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles (SOSP’07). ACM, New York, NY, USA, 321–334. DOI:http://doi.acm.org/
10.1145/1294261.1294293

B. W. Lampson. 1973. A note on the confinement problem. Communications of the ACM 16, 10 (1973),
613–615.

H. M. Levy. 1984. Capability-Based Computer Systems. Digital Press, Bedford, MA.
J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. 2009. Fabric: A platform for secure

distributed computation and storage. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP’09). ACM, New York, NY, USA, 321–334. DOI:http://doi.acm.org/10.1145/
1629575.1629606

P. Loscocco and S. Smalley. 2001. Integrating flexible support for security policies into the Linux operating
system. In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference. USENIX
Association, Berkeley, CA, USA, 29–42. DOI:http://dl.acm.org/citation.cfm?id=647054.715771

J. Manson, W. Pugh, and S. V. Adve. 2005. The Java Memory Model. Retrieved from http://dl.dropbox.com/
u/1011627/journal.pdf.

L. McVoy and C. Staelin. 1996. LMbench: Portable tools for performance analysis. In Proceedings of the 1996
USENIX Annual Technical Conference (ATEC’96). USENIX Association, 279–294.

A. C. Myers. 1999. JFlow: Practical mostly-static information flow control. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’99). ACM Press, New
York, NY, USA, 228–241.

A. C. Myers and B. Liskov. 1997. A decentralized model for information flow control. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP’97). ACM, 129–142.

A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. 2001. Jif: Java Information Flow. Retrieved July 2001
from http://www.cs.cornell.edu/jif.

A. C. Myers, A. Sabelfeld, and S. Zdancewic. 2004. Enforcing robust declassification. In Proceedings of the
17th IEEE Workshop on Computer Security Foundations (CSFW’04). IEEE Computer Society, 172–186.

S. K. Nair. 2009. Remote Policy Enforcement Using Java Virtual Machine. Ph.D. Dissertation. Vrije Univer-
sity, Amsterdam.

S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. 2008. A virtual machine based information
flow control system for policy enforcement. Electron. Notes Theor. Comput. Sci. 197, 1 (Feb. 2008), 3–16.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.

http://dx.doi.org/10.1109/CSFW.2006.6
http://doi.acm.org/10.1145/1294261.1294293
http://doi.acm.org/10.1145/1294261.1294293
http://doi.acm.org/10.1145/1629575.1629606
http://doi.acm.org/10.1145/1629575.1629606
http://dl.acm.org/citation.cfm?id$=$647054.715771
http://dl.dropbox.com/u/1011627/journal.pdf
http://dl.dropbox.com/u/1011627/journal.pdf
http://www.cs.cornell.edu/jif


4:50 D. E. Porter et al.

Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R. Geva, S. Kozhukow, R.
Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian. 2008. Design and implementation of
transactional constructs for C/C++. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programming Systems Languages and Applications (OOPSLA’08). ACM, New York, NY, USA,
195–212. DOI:http://doi.acm.org/10.1145/1449955.1449780

J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. 2013. ...and region serializability for all. In Proceedings
of the 5th USENIX Workshop on Hot Topics in Parallelism. USENIX.

W. Pugh. 2005. May 12th Description of Final Fields. Retrieved from http://www.cs.umd.edu/∼pugh/
java/memoryModel/may-12.pdf.

I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. 2009. Laminar: Practical fine-grained decen-
tralized information flow control. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’09). ACM, 63–74.

A. Russo and A. Sabelfeld. 2010. Dynamic vs. static flow-sensitive security analysis. In Proceedings of the
2010 23rd IEEE Computer Security Foundations Symposium (CSF’10). IEEE Computer Society, 186–
199.

A. Sabelfeld and A. C. Myers. 2006. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 21, 1 (September 2006), 5–19.

J. S. Shapiro, J. M. Smith, and D. J. Farber. 1999. EROS: A fast capability system. In Proceedings of the
Seventeenth ACM Symposium on Operating Systems Principles (SOSP’99). ACM, 170–185.

P. Shroff, S. Smith, and M. Thober. 2007. Dynamic dependency monitoring to secure information flow. In
Proceedings of the 20th IEEE Computer Security Foundations Symposium (CSF’07). IEEE Computer
Society, 203–217.

V. Simonet and I. Rocquencourt. 2003. Flow Caml in a nutshell. In Proceedings of the 1st APPSEM-II
Workshop. 152–165.

Standard Performance Evaluation Corporation. 2001. SPECjbb2000 Documentation (release 1.01 ed.).
M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood. 2009a. Execution leases: A hardware-

supported mechanism for enforcing strong non-interference. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’42). ACM, 493–504.

M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T. Sherwood. 2009b. Complete informa-
tion flow tracking from the gates up. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’XIV). ACM, 109–120.

N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August. 2004. RIFLE: An architectural framework for user-centric information-flow security. In
Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’04).

S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and D.
Mazières. 2007. Labels and event processes in the Asbestos operating system. ACM Transactions on
Computer Systems 25, 4 (2007), 11.

V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. 2006. Provably correct runtime enforcement
of non-interference properties. In Proceedings of the 8th International Conference on Information and
Communications Security (ICICS’06). Springer-Verlag, 332–351.

D. Volpano and G. Smith. 1999. Probabilistic noninterference in a concurrent language. J. Comput. Secur. 7,
2–3 (Nov. 1999), 231–253.

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K. Hartman. 2002. Linux security modules: General
security support for the Linux kernel. In Proceedings of the USENIX Security Symposium. USENIX
Association, 17–31.

S. Zdancewic and A. C. Myers. 2003. Observational determinism for concurrent program security. In Pro-
ceedings of the IEEE Computer Security Foundations Workshop (CSFW’03). 29–43.

Steve Zdancewic and Andrew C. Myers. 2001. Robust declassification. In Proceedings of the 14th IEEE
Workshop on Computer Security Foundations (CSFW’01). IEEE Computer Society, Washington, DC,
USA, 15–23. DOI:http://dl.acm.org/citation.cfm?id=872752.873524

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. 2006. Making information flow explicit in HiS-
tar. In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’06). USENIX Association, 263–278.

N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. 2008. Securing distributed systems with information flow
control. In Proceedings of the 5th USENIX Symposium on Networked Systems Design & Implementation
(NSDI’08). USENIX Association, 293–308.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.

http://doi.acm.org/10.1145/1449955.1449780
http://www.cs.umd.edu/sim;pugh/java/memoryModel/may-12.pdf
http://www.cs.umd.edu/sim;pugh/java/memoryModel/may-12.pdf
http://dl.acm.org/citation.cfm?id$=$872752.873524


Practical Fine-Grained Information Flow Control Using Laminar 4:51

N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. 2008. Hardware enforcement of application security
policies using tagged memory. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08). USENIX Association, 225–240.

Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2011. Predictive mitigation of timing channels in
interactive systems. In Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS’11). ACM, 563–574.

D. Zhang, A. Askarov, and A. C. Myers. 2012. Language-based control and mitigation of timing channels. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’12). ACM, New York, NY, USA, 99–110. DOI:http://doi.acm.org/10.1145/2254064.2254078

Received March 2011; revised February 2014; accepted June 2014

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: November 2014.

http://doi.acm.org/10.1145/2254064.2254078

