
1

A Praise for Defensive Programming: Leveraging
Uncertainty for Effective Malware Mitigation

Ruimin Sun∗, Marcus Botacin¶, Nikolaos Sapountzis∗, Xiaoyong Yuan∗, Matt Bishop‡, Donald E. Porter§,
Xiaolin Li†, Andre Gregio¶ and Daniela Oliveira∗

University of Florida, USA ∗ {gracesrm,nsapountzis,chbrian}@ufl.edu, ∗{daniela}@ece.ufl.edu
University of North Carolina at Chapel Hill, USA §porter@cs.unc.edu

University of California at Davis, USA ‡mabishop@ucdavis.edu
Federal University of Parana, Brazil ¶{mfbotacin,gregio}@inf.ufpr.br

AI Institute, Tongdun Technology, China †xiaolin.li@tongdun.net

F

Abstract— A promising avenue for improving the effectiveness of
behavioral-based malware detectors is to leverage two-phase detection
mechanisms. Existing problem in two-phase detection is that after the
first phase produces borderline decision, suspicious behaviors are not
well contained before the second phase completes.

This paper improves CHAMELEON, a framework to realize the un-
certain environment. CHAMELEON offers two environments: standard—
for software identified as benign by the first phase, and uncertain—
for software received borderline classification from the first phase. The
uncertain environment adds obstacles to software execution through
random perturbations applied probabilistically. We introduce a dynamic
perturbation threshold that can target malware disproportionately more
than benign software. We analyzed the effects of the uncertain en-
vironment by manually studying 113 software and 100 malware, and
found that 92% malware and 10% benign software disrupted during
execution. The results were then corroborated by an extended dataset
(5,679 Linux malware samples) on a newer system. Finally, a careful
inspection of the benign software crashes revealed some software bugs,
highlighting CHAMELEON’s potential as a practical complementary anti-
malware solution.

Index Terms—OS, Uncertainty, Malware, Fuzzing

1 INTRODUCTION

Real-time malware detection is challenging. The indus-
try still relies on antivirus technology for threat detection
[56, 82], which is effective for malware with known signa-
tures, but not sustainable for the massive amount of new
malware samples released daily (practical detection rates
from 25% to 50% [2]). Thus, the AV industry started to
rely on behavioral-based detectors built upon heuristics,
which are more “generic” than signatures, but suffer from
high false-positive rates [19, 20]. In a company, aggressive
heuristics, i.e., those that are too focused on blocking sus-
picious software, can interfere with employee’s productivity,
resulting in employees overriding or circumventing security
policies.

In addition, existing AV software mostly aims to identify
the signature or monitor the runtime behavior through
isolating the software for a while until a decision can be
made [19, 24, 18]. However, some software behavior may
be hard to define. For example, malware may start by
sleeping for five minutes or even longer and then perform

malicious activities, or be only active during midnight and
show benign behaviors for most of the time. These type of
malware makes it hard for single step malware detector to
give an accurate decision.

Recently, two-phase hybrid detection methods are gain-
ing attention [60, 78] due to their capabilities in finding
malware with complicated behaviors. In [78], the solution
starts by using traditional machine learning models that are
fast but not very accurate in its first-stage malware detec-
tion. If a borderline classification is received, modern deep
learning methods that are accurate but time-consuming are
performed for further analysis. However, the problem exists
in this solution and any other two-phase detection methods
is that, after the first phase gives a borderline decision,
potential malware experiences no obstacles in executing
its malicious behaviors before the second phase detector
completes.

In this paper, we present CHAMELEON, a framework
that separates the OS into two environments: standard and
uncertain. The standard environment is a regular environ-
ment that all software starts execution from. In the uncertain
environment, the software will experience probabilistic and
random perturbations whose aim is to thwart the actions
of potential malware while second phase analysis is under
way. We provide a detailed description of the design and
implementation of CHAMELEON, as well as new extensions
to our framework.

The hypothesis is that the uncertain environment will
mostly disturb malicious programs instead of benign ones.
This is supported due to the increasing demand for defen-
sive programming [5] among software producing organi-
zations. Under this paradigm, poor-written malware code
would be disproportionally more affected by the pertur-
bations than well-written benign software, since defensive
programming is a form of design intended to ensure the
continuing operation of a piece of software under unfore-
seen circumstances, making the software behave in a reliable
manner despite unexpected inputs or user actions.

In addition, malicious programs are not exquisite pieces
of software overall—malware developers have to be able
to quickly produce variants as AV signatures are created,
causing them to be poorly coded. Malware also usually



depend on specific configurations or installed applications
to properly work, making them more prone to crashing due
to uncertainties of the operating system (OS) it should run.

We evaluate the impact of uncertainty and unpredictabil-
ity on actual malware samples compared to benign software
and discuss the reasons why the samples fail to address
the unexpected execution effects. CHAMELEON’s strategy
increases the cost of attacks, as writing malware using
defensive programming requires additional programming
efforts and time.

In our evaluation of CHAMELEON [75], we manually in-
spected the execution and its effects of 100 samples of Linux
malware and 113 common benign software from several
categories. Our results show that at a perturbation thresh-
old 10% (i.e., a 10% probability of perturbation for every
system call that could be perturbed), intrusive perturbation
strategies thwarted 62% of malware, while non-intrusive
strategies caused a failure rate of 68%. At a perturbation
threshold 50%, the percentage of adversely affected malware
increased to 81% and 76% respectively. With a 10% perturba-
tion threshold, the perturbations also cause various levels of
disruption (crash or hampered execution) to approximately
30% of the analyzed benign software. With a 50% threshold,
the percentage of software adversely affected raised to 50%.
We also found that I/O-bound software were three times
more sensitive to perturbations than CPU-bound software.

Finally, we introduced an optional dynamic perturbation
threshold to CHAMELEON. This threshold is computed so
as to penalize more intensively software presenting known
malicious behavior. Our analysis show that the application
of such threshold caused 92% of malware to fail and im-
pacted only 10% of benign software. Compared with a static
threshold, this dynamic threshold improved in 20% the
number of benign software unaffected by the perturbations
and caused 24% more malware to crash or be hampered
in the uncertain environment. We also analyzed the crash
logs from benign software undergoing non-intrusive pertur-
bations, and found that it was actually software bugs that
caused the crashes.

CHAMELEON has the potential to advance systems secu-
rity, as it can (i) make systems diverse by design because of
the unpredictable execution in the uncertain environment,
(ii) increase attackers’ workload, and (iii) decrease the speed
of attacks and their chances of success. In this paper, we
improved our work described in CHAMELEON [75], and
presented the following new contributions:

• We designed and implemented a dynamic perturbation
threshold based on the behavior of software execution.
We showed that such threshold is more effective than a
static threshold in that it causes more adverse effects to
malware execution and less impact to benign software.

• We designed and implemented a fully automated Linux
testbed1 for collecting system call traces (at kernel
level) from malware and benign software when these
software is under perturbations. Such testbed can be
leveraged to analyze benign software behavior under
OS misbehavior and help developers pinpoint portions

1. The testbed is publicly available at
https://github.com/gracesrm/Chameleon-malware-testbed

of their software that are sensitive to misbehavior, thus
leading to more resilient software.

• We further collected 5,679 Linux malware samples
and analyzed this extended malware dataset on a
new version system. The results corroborated our
findings on previous small sample set, and indicated
CHAMELEON’s capability of standing the test of time.

• We provided the results of analysis of case studies
of applications running under CHAMELEON, including
malware using three evasive stalling techniques, and
commonly used benign software (e.g. vim, tar, Mozilla
Firefox and Thunderbird) affected.

This paper is organized as follows. Section 2 describes
our threat model and assumptions. Section 3 describes in
detail CHAMELEON’s design and implementation, including
the newly proposed dynamic perturbation threshold. Sec-
tion 4 describes CHAMELEON’s security and performance
evaluation, including our analysis of causes of crashes for
benign software in the uncertain environment. Section 5
discusses and summarizes CHAMELEON’s results and lim-
itations. Section 6 summarizes related work on malware de-
tection, software diversity, and attempts on unpredictability
as a security mechanism. Section 7 concludes the paper.

2 THREAT MODEL AND ASSUMPTIONS

CHAMELEON’s protection is designed for corporate envi-
ronments, which have adopted the practice of controlling
software running at their perimeters [20].

We assume that if an organization is a target of a well-
motivated attacker, malware will eventually get in (e.g.,
spear-phishing). If the malware is zero-day, it will not be
detected by any signature-based antivirus (AV). If the mal-
ware receives a borderline classification by behavioral-based
detectors, it might lurk inside the organizations for extended
periods of time. With CHAMELEON, if this piece of malware
might receive a borderline classification at some point by
a conventional machine learning detector, it would then be
placed in the uncertain environment. In this environment
the malware would encounter obstacles and delays to oper-
ate, while more time and resource-consuming deep analysis
is underway to definitely flag it as malicious.

CHAMELEON does not compete with standard lines of
defenses, such as conventional AVs, behavioral-based detec-
tors, and firewalls, but actually equips these solutions with
a safety net in case of misdiagnosis.

3 DESIGN AND IMPLEMENTATION

We designed and implemented CHAMELEON for the Linux
OS. CHAMELEON offers two environments to its processes:
(i) a standard environment, which works predictably as any
OS, and (ii) an uncertain environment, where a subset of
the OS system calls for selected processes undergo unpre-
dictable perturbations.

The key insight is that perturbation in the uncertain
environment will hamper malware’s chances of success, as
some system calls might return errors in accessing system
resources (e.g. network connections or files) or cause mal-
ware execution delays.

2



3.1 The Perturbation Set
Our first step was deciding which system calls were good
candidates for perturbation. We relied on Tsai et al.’s
study [81], which ranked Linux system calls by their like-
lihood of use by applications. Based on these insights, we
selected 37 system calls for the perturbation set to repre-
sent various OS functionalities relevant for malware (file,
network, and process-related). Most of these system calls
(summarized in Table 1) are I/O-bound, since I/O is essen-
tial to nearly all malware, regardless of its sophistication
level.

We introduced new versions for all system
calls in the perturbation set. For each system call
orig_<syscall_name> in the perturbation set,
CHAMELEON altered the corresponding table entry to
point to my_<syscall_name>, in which perturbations
were added if the software was executing under the
uncertain environment.

TABLE 1: System call perturbation set.
Category System call

File-
related

sys open, sys openat, sys creat, sys read,
sys readv, sys write, sys writev, sys lseek,
sys close, sys stat, sys lstat, sys fstat,
sys stat64, sys lstat64, sys fstat64, sys dup,
sys dup2, sys dup3, sys unlink, sys rename

Network-
related

sys bind, sys listen, sys connect, sys accept,
sys accept4, sys sendto, sys recvfrom,
sys sendmsg, sys recvmsg, sys socketcall

Process-
related

sys preadv, sys pread64,
sys pwritev, sys pwrite64,
sys fork, sys clone, sys nanosleep

3.2 Perturbation Strategies
We introduced two sets of perturbation strategies. The first,
non-intrusive, perturbed software execution within the OS
specification. The second, intrusive, could cause corruption
in the software execution. From the end user point of view,
intrusive strategies might cause functionalities to be tem-
porarily unavailable. Non-intrusive strategies might cause
software to run slower.

3.2.1 Non-intrusive Perturbation Strategies
1. System call silencing with error return: The system call
immediately returns an error value randomly selected from
the range [-255, -1]. This perturbation strategy can create
difficulties for the execution of the process which do not
handle errors well. Further, this strategy can cause transient
unavailability of resources, such as files and network, cre-
ating difficulties for certain types of malware to operate. In
this perturbation type, all error returns are within the OS
specification, i.e., the expected set of return values.
2. Process delay: The system call injects a random delay
during its execution to delay potential malware execution.
It can create difficulties in timely malware communication
with a C&C for files ex-filtration, as well as prevent flooders
from sending enough packets in a very short time, rate-
limiting DoS attacks. The delay range was chosen as a
random number within [0,0.1] as an experimental range. A
delay longer than 0.1s could cause network applications to
timeout and terminate early.
3. Process priority decrease: The system call decreases the dy-
namic process priority to the lowest possible value, delaying
process scheduling.

3.2.2 Intrusive Perturbation Strategies
1. System call silencing: The system call immediately returns
a value (without being executed) indicating a successful
execution.
2. Buffer bytes change: The system call experiences an increase
or decrease in the size of a buffer passed as parameter.
It can be applied to all system calls with a buffer param-
eter, such as sys_read, sys_write, sys_sendto and
sys_recvfrom. This strategy can corrupt the execution of
malicious scripts, thus making exfiltration of sensitive data
more difficult. This strategy also targets viruses, which can
be adversely affected by the disruption of the buffer with a
malicious payload trying to be injected into a victim’s ELF
header—the victim process may get corrupted and lose its
ability to infect other files.
3. Connection restriction: The strategy changes the IP address
in sys_bind, or limits the queue length for established
sockets waiting to be accepted in sys_listen. The IP
address can be randomly changed, which will likely cause
an error, or it can be set to the IP address of a honeypot,
allowing backdoors to be traced.
4. File offset change: The strategy changes a file pointer in
the sys_lseek system call so that subsequent invocations
of sys_write and sys_read will access unpredictable file
contents within a specified, configurable range.

3.3 System Architecture
The key component of CHAMELEON is a kernel-level un-
certainty module (see Figure 1) which is responsible for
implementing the uncertain environment. Specifically, this
module (i) hooks into the Linux system call table 2 to replace
system calls in the perturbation set with new versions of
system calls that apply perturbations (Step 0 in Figure 1), (ii)
monitors system calls invoked by processes in the uncertain
environment, and (iii) applies perturbations to the system
calls when required. The perturbation strategies are chosen
randomly, and applied probabilistically, in the uncertain
environment.

CHAMELEON added the following fields to the Linux
task_struct:

process_env: a flag informing whether or not the
process should run in the uncertain environment.

fd_list: a list of critical file descriptors during process
execution. Applying perturbation to system files, such as
library or devices, will likely cause the process to crash.
Thus, CHAMELEON does not apply perturbations to system
calls manipulating those file descriptors (see Section 3.5 for
more details).

strategy_set: a flag informing the type of perturba-
tion strategies the process should undergo: non-intrusive or
intrusive.

threshold: an integer informing the probability that a
system call from the perturbation set invoked by a process
in the uncertain environment will undergo perturbation. In
other words, the threshold represents the strength of the
perturbation to be applied to a system call. The higher the

2. For system call monitoring, we choose to hook into the system
call table through a loadable kernel module rather than using strace,
because malware with anti-analysis techniques may stop executing
when strace is detected.

3



threshold, the higher the probability that a perturbation
strategy will be applied. By default, threshold 10% is used.

CHAMELEON’s operation is illustrated in Figure 1. Con-
sider Process 2, running in the uncertain environment in-
voking sys_write (Step 1), which belongs to the perturba-
tion set. Thus, as determined by the perturbation threshold,
a perturbation strategy can be applied to its execution. Dur-
ing CHAMELEON’s operation, the hooked system call first
inspects Process 2’s environment and finds that it runs
in the uncertain environment (Step 2). Next, sys_write
runs the corruption protection mechanism (see Section 3.5
for details) to make sure that no perturbation will occur
if the system call is accessing a critical file (Step 3). If
sys_write is not accessing a critical file, CHAMELEON
decides based on the probabilistic threshold whether or
not a perturbation should be applied. If a perturbation
is to be applied, sys_write randomly selects one of the
perturbation strategies that can be applied to its execution.

3.4 Dynamic Perturbation Threshold

As explained earlier, the perturbation threshold, denoted as
Tsyscall hereafter, represents the probability that a system call
belonging to the Perturbation Set and invoked by a process
in the uncertain environment will undergo perturbations.
In our original work [75], we assumed the same default
perturbation threshold for all system call invocations and
all syscall types when applicable. In this section, we go
a step beyond, and propose threshold Tsyscall that will
change based on the execution context and in a per-system
call, per-process fashion: it will be higher for processes
exhibiting known likely malicious behavior (to ensure more
system calls invoked by a malicious software are perturbed)
and will be lower for likely benign processes. To that end,
we introduce a dynamic perturbation threshold that changes
based on the system call type and invocation context of a
given process. The goal is to reduce the chance for benign
software to be false positively killed.

In the remainder of the section, we describe two families
of behaviors that are considered suspicious in the literature
[59, 63, 84, 50]. First, in Section 3.4.1 we consider the “signa-
ture” of the system call, namely a type of system call along
with its parameters (Behavior family A). The literature
reports some signatures for a few malicious invocations of
system calls [59, 63, 84, 50]. To that end, if a system call
is going to be invoked with a combination of parameters
matching the signature of a known likely malicious behav-
ior, CHAMELEON increases the threshold for that particular
system call invocation to some pre-defined threshold, thus
affecting the system call execution on-the-fly. Second, in
Section 3.4.2 we consider the invocation frequency of the
system call (Behavior family B). Specifically, if a system call
is invoked in an abnormally frequent manner and matches a
likely malicious behavior (e.g. DoS), CHAMELEON perturbs
its invocation with a probability that changes according
to the invocation frequency. For each family of behaviors
(signature or frequency), we identify examples of some
malware representative of the behavior, but one can extend
these families to consider more malicious behaviors. In Table
2 we summarized the notation used.

3.4.1 Behavior family A: a signature-based threshold
In the first family of malicious activities, we propose three
system call signatures for three different malicious behaviors.
We found that these signatures are prevalent in approxi-
mately 95% of the malware samples, and occurred in only
5% of the benign software samples in the system call traces
we collected. Therefore, it is plausible to assume that a
process invoking such behavior is likely malicious.
(A1. ELF Header Injection): A strategy often employed by
malware samples to get privileged access to a system is
to replace existing binary contents with malicious pay-
loads, thus benefiting from root and/or whitelist execution
permissions previously attributed to the affected binary.
This kind of injection can be correlated to the signature
sys_write("\177ELF") [59], which considers the ELF
(Executable and Linkable Format) magic number as argu-
ment for the sys_write system call.
(A2. I/O Redirection): Malware samples often rely on redi-
recting standard I/O descriptors to implement their mali-
cious behaviors. The keyboard descriptor is often redirected
by keyloggers to allow data collection. The screen output
descriptor is often redirected by remote shells to hide at-
tacker’s commands. I/O redirection can be correlated to sig-
natures targeting system calls that modify the standard I/O
descriptors, such as sys_dup(fd), where fd = {0, 1, 2} is
used as a stub to obtain the victim server’s standard input,
output and error, respectively [63].
(A3. Replacing system binaries): Rootkits often replace
(rewrite, remove or unlink) existing legitimate applica-
tions by malicious/trojanized versions so that they can
violate some security policy or hide malware traces [50].
In this sense, system binaries are the most targeted files
by rootkits [84], given their ability to provide users with
system information, such as the running processes list.
This behavior can be correlated to the system call signa-
tures sys_unlink("path") or sys_rename("path"),
and the ”path” refers to the location of system binaries, e.g.
”/bin”, and ”/usr/bin”.

For the sake of generality, we introduce three differ-
ent thresholds for each cases of behavior family A, as
they might refer to different levels of likelihood of ma-
licious activity. We assume these thresholds to be in-
put parameters, that can be changed based on a vari-
ety of factors, such as the running application, the re-
quirements of an organization, etc. Specifically, we assume
these thresholds to be tA1, tA2, tA3, respectively, where
A1 = sys write(”\177ELF”), A2 = sys dup(fd), A3 =
{sys unlink(”path”) or sys rename(”path”)}.

Note that CHAMELEON does not kill the correspond-
ing software nor it increases the perturbation threshold to
100% (tAi < 1) because benign software might also exhibit
such behaviors with a small probability, and CHAMELEON
expects benign software written with good quality to be
resilient to those perturbations.

3.4.2 Behavior family B: a frequency-based threshold
The second family of suspicious behaviors can be rep-
resented by the frequent invocation of a certain type of
system call during a process execution, as shown by Ptacek
and Newsham [70]. The goal of this family of malicious

4



Fig. 1: CHAMELEON’s architecture. When a process running in the uncertain environment invokes a system call in the perturbation set (Step 1),
the Uncertainty Module checks if the process is running in the uncertain environment (Step 2), and depending on the execution of the corruption
protection mechanism (Step 3), randomly selects a perturbation strategy to apply to the system call. The corruption protection mechanism prevents
perturbations during accesses to critical files, such as libraries.

TABLE 2: Notation. These are per-process parameters.
(Subscripts)

A1 System call Behavior A1: sys write(”/177ELF”)
A2 System call Behavior A2: sys dup(0), sys dup(1), sys dup(2)
A3 System call Behavior A3: sys unlink(”path”), sys rename(”path”)

syscall System call type syscall
max,min The maximum/minimum allowed value of an input
Inputs
tAi Fixed perturbation threshold for Behavior family A
p Coefficient of the relationship between Fsyscall and Tsyscall

Nmin Minimum allowed N for Behavior B
Fmin Minimum allowed Fsyscall for Behavior B
tmax Maximum allowed value for all perturbation thresholds

Variables
Tsyscall Perturbation threshold for the system call type syscall
nsyscall Total number of system calls invoked for type syscall
Fsyscall Invocation frequency for the system call type syscall

N Total number of system calls invoked

behaviors is to aggressively consume system resources until
the system cannot function for some or all of its legitimate
requests (e.g. DoS). In the following, we list two suspicious
behaviors belonging to this family and the corresponding
system calls that are frequently invoked.

(B1. Network flooding.) This can represent malware seeking
to make network resources unavailable to its intended users
by temporarily or indefinitely disrupting services of a host
connected to the Internet. Network flooding is typically ac-
complished by flooding the targeted machine with frequent
invocations of sys_sendto or sys_recvfrom.

(B2. Fork bomb.) This can represent malware forking pro-
cesses infinitely until the system runs out of memory. Once
the fork bomb is activated, it may not be possible to resume
normal operation without rebooting the system. A fork
bomb, as the name implies, is characterized by frequent
invocations of sys_fork.

In the remainder of the section, we: first, explain when
a system call is considered as Behavior family B based on
the invocation frequency, and then, we derive a formula that
dynamically adapts their threshold based on the system call
invocation frequency. Let us denote, in a process, the num-
ber of times that the system call type system call is invoked as
nsyscall and the current total number of system calls invoked
as N . Then, we introduce the invocation frequency of the
system call syscall as3:

Fsyscall =
nsyscall

N
. (1)

We assume that a system call syscall falls into Behavior
family B when both of the following conditions occur (i) the

3. Note that the invocation frequencies of all system calls should sum
to 1, i.e.

∑
systemcall Fsyscall = 1.

invocation frequency Fsyscall is higher than a pre-defined
minimum frequency Fmin (namely Fsyscall ≥ Fmin), and (ii)
the total number of system calls invoked N exceeds a min-
imum number Nmin (namely N ≥ Nmin), where Fmin and
Nmin are both input parameters. The first condition ensures
that the system call invocation frequency is high enough to
be considered as suspicious. The second condition ensures
that the software has launched itself and the first system
calls invoked by a process are not mistakenly perturbed.

We now derive the per-system call threshold Tsyscall as
a function of frequency. The goal is to increase the threshold
Tsyscall as the frequency Fsyscall increases, because the
higher Fsyscall the more likely the process is exhibiting
one of the behaviors in Behavior family B. One could use
different functions for that objective, and “penalize” the
threshold Tsyscall (and further the probability of a system
call being perturbed) on Fsyscall in a linear, quadratic,
cubic, etc. manner. Different powers correspond to different
penalty increases. Without loss of generality, we chose to use
linear function with coefficient p as an input parameter, and
the threshold of system call is defined as follows:

Tsyscall =

{
p · Fsyscall, if p · Fsyscall ≤ tmax ,

tmax, otherwise.
(2)

We want to keep Tsyscall 6= 1 to prevent the sce-
nario where all system calls are perturbed and software
crashes at the very beginning, and thus Tsyscall takes values
0 ≤ Tsyscall < 1. The input parameter 0 ≤ tmax < 1 dictates
the maximum value that Tsyscall can obtain. Specifically,
the threshold Tsyscall increases linearly on the product be-
tween the coefficient and the invocation frequency, namely
p · Fsyscall, when the latter is less than tmax (see first branch
of Eq. 2). On the other hand, if the product exceeds the
maximum value tmax, then the threshold is tmax (see second
branch of Eq. 2). tmax allows the user to customize the
maximum threshold, namely the strongest perturbations
desired for the software. Note that, as we need to keep
0 ≤ Tsyscall < 1, p can take values 0 ≤ p < 1

Fsyscall
.

We show here an example for the second family of
suspicious behaviors, with Fmin = 0.7. Assuming a flooding
attack on a machine, that invokes a sys_recvfrom system
call with invocation frequency Fsyscall = 0.9, and has an
input coefficient parameter p = 0.8. Then, the threshold will
be Tsyscall = 0.8 ∗ 0.9 = 0.72. This is classified as the second
family of suspicious behaviors and the sys_recvfrom sys-
tem call has 72% probability to encounter perturbations. It is
clear that, the higher the frequency Fsyscall or the parameter

5



p, the higher the Tsyscall and thus the more frequent the
software will encounter perturbations.

Note that a certain system call can simultaneously be-
long to the two families of suspicious Behavior families A
and B. For example, system call sys_write("\177ELF")
that is hallmark for the Behavior family A may also have
high invocation frequency (Fsys write > Fmin) suggesting
that it also belongs to Behavior family B. In this case,
each behavior would suggest a threshold: the first family
would suggest tA1 and the second family would suggest
Tsys write. As the probability for benign software to exhibit
two suspicious behaviors at the same time is relatively
small, we chose to use the higher threshold between the
two behaviors i.e. T = max{Tsys write, tA1} for the software
under consideration.

For each of the input parameters, we chose an experience
value to carry out our experiments. Without loss of gener-
ality, we chose tA1 = tA2 = tA3 = tmax for simplicity of
the experiment. We chose tmax = 0.95 because the strongest
perturbations should still allow software to run and exhibit
its behaviors, namely tmax should be close to but smaller
than 1. We chose Nmin = 100 because most of the software
can finish loading its libraries by the time of 100 system
calls are invoked. We chose Fmin = 0.7 because the least
aggressive DoS software can still invoke a certain type of
system call as frequent as to occupy 70% of all the system
calls. We chose p = 1.2 (since Fmin = 0.7 the maximum
value of p is 1.42 - see Eq. 2). These values cause less
perturbations in benign software while affected malware
more, as our evaluation results showed in Section 4. For
system calls which do not exhibit behaviors, as described
by behavior families A and B, the default threshold will be
used.

3.5 Corruption Protection Mechanism

The uncertainty module employs a corruption protection
mechanism to prevent perturbations while a process in
the uncertain environment is accessing critical system files,
which might cause process to crash at a very early stage.
The files are identified through file descriptors, created by
sys_open, sys_openat and sys_creat, and are deleted
by sys_close. System calls whose parameters are file de-
scriptors, such as sys_lseek, sys_read and sys_write,
are under this protection mechanism. These protected files
are determined by an administrator and tracked by setting
an extended attribute in the file’s inode in the .security
namespace (a similar strategy is employed by SELinux [36]).

When a process running in the uncertain environment
opens a file with a path name beginning with the name
or containing keywords of the critical directories, the file
descriptor (fd) is added to a new per-process data structure
fd list. Later, when this process invokes sys_read or
sys_write referring to an fd in fd list, the protection
mechanism will prevent perturbation strategies from being
applied to these system calls.

Algorithm 1 shows how the OS applies the perturbation
strategies on sys_write. First, the following conditions are
checked: (i) the process is running in the standard environ-
ment (process env == 0), and (ii) the targeted file descrip-
tor is a critical system file. If either of the two conditions is

true the system call runs normally. Otherwise, the system
call updates its execution counters of the current process
(i.e. the total number of system calls invoked N and the
total number of sys_write invoked nsys write) and check
whether sys_write exhibits frequent invocation based on
the input parameter Fmin. Then the algorithm generates
a random number in the range [0,1], and if the number
is smaller than the threshold, the system call undergoes
perturbation.

The algorithm will randomly select one of the perturba-
tion strategies based on the strategy type. If non-intrusive
strategies are selected, one of the following strategies will
be randomly selected for execution: System call silencing
with error return, Process delay, or Process priority decrease. If
sys_write is silenced, a random error code is returned, so
that the process knows that an error occurred. If Process delay
is chosen, the algorithm randomly selects a delay for the
system call execution in the range [0, 0.1s]. Our experiment
show that a delay longer than 0.1 second will cause the
program to timeout and the software to terminate at an early
stage. If Process priority decrease is selected, the algorithm
decreases the process priority to the minimum. If intrusive
strategies are selected, perturbation strategies System call
silencing, or Buffer bytes change will be randomly selected.
If System call silencing is selected, CHAMELEONsys_write
will return the buffer size without actually writing to the
file. Otherwise, CHAMELEON will change the buffer bytes
and return the new length of the buffer.

4 EVALUATION

The goal of our evaluation was to discover the impact of
CHAMELEON’s uncertain environment in affecting malware
and benign software behavior. We considered security, per-
formance, and software behavior to answer the following
research questions: (i) how will the uncertain environment
with perturbation strategies affect software execution? (ii)
is the per-process, per-system call perturbation threshold
more effective than a static threshold? (iii) how different
strategies impact malware in the uncertain environment?,
and (iv) how can benign software be more resilient in the
uncertain environment?

Our evaluation leveraged a collection of 113 software
including common software from GNU projects [13], SPEC
CPU2006 [23] and Phoronix-test-suite [22] (47 I/O-bound
and 66 CPU-bound). The malware samples used in our
evaluations were selected from THC [27] and VirusShare
[33].

Our selection criteria was to have a diverse software
dataset, which at the same time, could allow timely manual
analysis of all aspects of execution. For certain cases, the
outcome of software execution can only be analyzed via
manual inspection (e.g., the outcome of files produced by a
text editor under the uncertain environment). Other reasons
for the need to perform manual analysis were as follows.
First, we needed to reverse engineering malware binaries to
discover whether the malware sample was a self-contained
desktop binary, which libraries and versions were required
for the malware execution, which input parameters were
required for execution, and to correctly install the specific
software and version that a certain malware would inject

6



Algorithm 1: Applying perturbations to sys_write()

Function long my sys write(fd, buf, size)
if process env == 0 or corruption protection(sys write, pid,

fd list) then
return orig sys write(fd, buf, size);

else
boolean top;
freq = isFrequentCalls(N++, nsys write++);
updateThreshold(freq);
if (random(0.0, 1.0) > threshold) then

return orig sys write(fd, buf, size);
end
if strategy set == Non− intrusive then

strategy = random(1,3);
if strategy = 1 then

/* System call silencing with
error return */

return random(-255, -1);
else if strategy = 2 then

/* Process delay */
delay(random(0, MAX DELAY));
return orig sys write(fd, buf, size);

else
/* Process priority decrease */
decrease current priority();
return orig sys write(fd, buf, size);

end
end
else

/* strategy_set == Non− intrusive */
strategy = random(1,2);
if strategy = 1 then

/* System call silencing */
return size;

else
/* Buffer bytes change */
newbuf = RandomBytes(buf);
return orig sys write(fd, newbuf, size);

end
end

end

payload into. Second, we needed to prepare the malware
with all its required resources, such as installing libraries,
setting up the environment, and launching the victim soft-
ware.

We analyzed 100 malware samples belonging to different
categories (22 flooders, 14 worms, 15 spyware, 24 Trojans,
and 25 viruses). The samples contained executables built on
both x86 and x86 64 systems. All the malware and benign
software used in our experiments are detailed in Table 12
and Table 11 in the Appendix.

We deployed and evaluated CHAMELEON on two virtual
machines (VMs) both running Ubuntu 12.04 with 1GB RAM,
30GB Hard Disk, and one processor. One VM used x86
architecture, and the other used x86 64 architecture.

4.1 Testbed and Data Collection

We implemented a testbed to perform our experiments. The
testbed is deployed in a host desktop running Ubuntu 14.04
with 16GB RAM, 160GB Hard Disk, x86 64 architecture,
and 8 processors. In each test, the testbed runs two VMs:
(i) Test VM, running CHAMELEON and testing malware and
benign software, and (ii) Victim VM, running with resources
that the malware in the Test VM may want to attack. This
subsection details the architecture of the testbed (Figure 2)
and the process of automating scalable experiments. It has

two virtual machines and four other components running
as user land processes: (i) a central Controller, (ii) a Resource
Scheduler, (iii) a Task Scheduler and (iv) a Data Collector.

Before starting the experiments, we set up the firewall to
block all the possible network connections between the host
and the VMs for security purposes. The VMs can communi-
cate with each other, and can reach outside network through
port 53 (DNS) and port 80 (HTTP) needed for malware
downloading payloads from the Internet (Step 0 in Figure
2).

The Controller is responsible for managing the other com-
ponents. It first starts the Resource Scheduler to prepare the
files and parameters for all the experiments, then launches
the Task Scheduler to run malware and benign software in
the Test VM, and finally starts the Data Collector to record
system call traces and execution results of each experiment
(Step 1).

The Resource Scheduler is responsible for preparing the
resources needed for each experiment in the Test VM. First,
it reverts the Test VM into a clean snapshot—a preserved
state of the VM that the user can return to repeatedly. Then,
it loads the uncertainty module to the Test VM (Step 2).
Finally, it copies the software and the corresponding files
and parameters needed during the execution from the host
to the Test VM (Step 3).

The Task Scheduler is responsible for executing tasks in
the VMs. This involves starting the Dionaea [8] service in
the Victim VM, and executing malware or benign software
in the Test VM (Step 4). The Dionaea [8] service provides the
required resources, such as network services, for malware
running in the Test VM.

The Data Collector is responsible for collecting system
call traces logged in dmesg and software execution results,
including returned error and segmentation fault (Step 5).

4.2 Security

The goal of the security evaluation is to analyze the effects
of CHAMELEON’s uncertain environment in malware and
benign software execution. We considered that a piece of
malware was adversely affected by the uncertain environment
if it crashed or experienced issues in its executed. An ex-
ecution is considered Crashed if malware terminates before
performing its malicious actions. An execution is considered
Succeeded if malware accomplished its intended tasks, such
as injecting malicious payload into an executable. The fol-
lowing outcomes are non-exhaustive examples of hampered
malware execution in the uncertain environment: (1) a virus
that injects only part of the malicious code to an executable
or source code file; (2) a botnet that loses commands sent to
the bot herder; (3) a cracker that retrieves wrong or partial
user credentials; (4) a spyware that redirects incomplete
stdin, stdout or stderr of the victim; (5) a flooder that
sends only a percentage of the total number of packets it
attempted.

We evaluated the effects of the uncertain environment
with 100 Linux malware samples (see Table 12 in the Ap-
pendix for the list) using intrusive and non-intrusive per-
turbation strategies and static and dynamic thresholds. As
Figure 3 shows, on average, intrusive strategies produced
approximately 10% more Crashed and 8% fewer Hampered

7



Fig. 2: The architecture of our evaluation testbed. The firewall restricts network from all VMs (Step 0). The Controller starts the Resource
Scheduler, the Task Scheduler and the Data Collector (Step 1). The Resource Scheduler reverts the Test VM to a clean Snapshot and loads into it
the uncertainty module (Step 2), copies the software resources (e.g. files and parameters needed) (Step 3). The Task Scheduler starts the Dionaea
service in the Victim VM and executes software in the Test VM (Step 4). The Data Collector reads system call traces and execution results to aid
crash analysis (Step 5).

execution results than non-intrusive strategies. For both
intrusive and non-intrusive strategies, the ratios of Suc-
ceeded malware execution (infection) were almost the same.
When intrusive strategies were applied, 81% of the malware
samples failed to accomplish their tasks at threshold 50%,
62% failed at threshold 10%, and 92% failed with a dynamic
per-system call threshold. Non-intrusive strategies yielded
similar results for threshold 50%, 10% and per-system call
threshold, with 76%, 68%, 93% of malware adversely af-
fected, respectively. In general, threshold 50% caused more
Crashed and fewer Succeeded malware execution results
than threshold 10%. The dynamic threshold caused 25%
fewer malware to succeed, and caused 30% more malware
to crash during execution than static threshold. This corrob-
orates our assumption that a dynamic threshold focusing
on likely malicious behavior will be effective at targeting
malware.

We also ran our samples of general software in the un-
certain environment and observed their execution outcome.
Non-exhaustive examples of Hampered executions are: (1)
a text editor temporarily losing some functionality; (2) a
scientific tool producing partial results; or (3) a network tool
missing packets. The execution outcome was considered
Crashed if the software hanged longer than twice its standard
runtime and needed to be manually killed. A Succeeded
execution generated outputs that matched those produced
with the same test case in the standard environment and
with a runtime that did not exceed twice than that in the
standard runtime.

As expected (Figure 4), compared to non-intrusive strate-
gies, intrusive strategies caused more adverse effects to
benign software with approximately 10% more Crashed,
7% more Hampered, and 15% fewer Succeed execution. At
static threshold 10% with intrusive strategies, on average,
37% of the tasks experienced some form of Crashed or Ham-
pered execution. With non-intrusive strategies, this percent-
age was 30%. For a 50% static threshold and intrusive
strategies, 59% of the software was adversely affected. With
non-intrusive strategies, this number was 10% smaller. A
dynamic threshold with non-intrusive strategies on benign
software led to 25% more Succeeded, 15% fewer Hampered,
and 20% fewer Crashed executions for benign software than
a static threshold for the same configurations. With intrusive
strategies, the effects of the dynamic threshold were similar

to using a static threshold of 10%.
These results corroborate our hypothesis that the uncer-

tain environment with a dynamic threshold can better iso-
late benign software from perturbations, and disproportion-
ately affect malware compared to using static thresholds.

4.3 Software Behavior and Performance
We compared the execution of malware and benign software
at the system call level in the uncertain environment. We
explored the effects of different software types, software
workloads, and perturbation strategies.

In our experiments, benign software invoked more than
twice the number of system calls invoked by malware (even
flooders, which usually invoke a large number of system
calls). For benign software the number of system calls per-
turbed or silenced was only half of those of malware, mainly
because of the effectiveness of the corruption protection
mechanism (see Section 3.5). Benign software performed
a larger number of connection attempts and read/write
operations than malware.

Table 3 and Table 4 show the results of system calls per-
turbed for different types of malware using non-intrusive
and intrusive strategies. The impact of intrusive and non-
intrusive strategies is similar. Generally, threshold 50%
caused higher percentage of perturbations than a static
threshold of 10% and dynamic threshold, especially with
connection-related system calls (50% increase in the percent-
age of perturbations). The dynamic threshold caused higher
percentage of perturbations than static threshold td = 10%,
because a dynamic threshold could vary from td = 10% to
tmax = 95%. For all types of system calls invoked, flooders
had the highest percentage of perturbations and worms had
the lowest percentage of perturbations, with both static and
dynamic threshold. Based on previous work [75], this can
be explained by flooders invoking a large number of system
calls in the perturbation set, while worms invoking a smaller
number. For network-related system calls, spyware had the
lowest percentage of perturbation with both static and dy-
namic perturbation thresholds. With a dynamic threshold,
spyware had 0% of its network-related system calls per-
turbed. This can be explained that network-related system
calls are usually invoked after sys_dup(0) system call,
which was perturbed with threshold tmax = 95%. In other
words, network-related system calls can hardly be invoked

8



Fig. 3: Execution results for malware running in the uncertain environment using intrusive and non-intrusive strategies with static (10% and 50%)
and per-system call thresholds.

Fig. 4: Execution results for benign software running in the uncertain environment using intrusive and non-intrusive strategies with static (10%
and 50%) and dynamic thresholds.

before spyware crashes. Similarly, for buffer-related system
calls, spyware also experienced a very small number of
perturbations, indicating a crash after sys_dup(0) system
call.

Tables 5 and 6 show the results of system call per-
turbation for benign I/O-bound and CPU-bound software
using non-intrusive and intrusive strategies. In general, a
threshold of 50% caused higher percentages of system calls
perturbed than a threshold of 10%. With static thresholds
of 10% and 50%, compared with IO-bound software, CPU-
bound software experienced a higher percentage of system
calls perturbed, and lower percentages of connection-related
system calls and buffer-related system calls perturbed. Dy-
namic threshold applied to I/O-bound software caused a
higher percentage of system calls perturbed compared to
CPU-bound software, mainly because the dynamic thresh-
old is likely to affect IO-related system calls more (see
Behaviors in Section 3.4).

One of the greatest differences between the malware and
benign software analyzed in this study is the diversity of the
latter. To ensure a fair analysis of benign software, we mea-
sured the test coverage (percentage of software instructions
executed) by compiling benign software source code with
gcov [12], EMMA [9], and Coverage.py [6] based on the
software’s programming language. The average coverage
for benign software in our analysis was 69.49%.

We also analyzed the performance penalty caused by
the perturbation strategies, such as process delay and pro-
cess priority decrease on all 23 benchmark software whose
execution could be scripted (see Table 11 in the appendix
for a list of these benchmark software). Highly interactive

software was tested manually and showed negligible per-
formance overhead. Figure 5 shows the average runtime
overhead for software whose execution could be scripted
running in the uncertain environment. For runtimes ranging
from 0 to 0.01 seconds, the average penalty was 8%; for
runtimes ranging from 0.1 to 1 seconds, the average penalty
was 4%; for runtimes longer than 10 seconds, the average
penalty was 1.8%. This shows that the longer the runtime,
the smaller the performance overhead. One hypothesis is
that software with longer execution time is usually CPU-
bound. Because most of the system calls in the perturbation
set are I/O related, CPU-bound programs end up being
perturbed less intensively.

Fig. 5: Performance penalty for 23 benchmark software whose execu-
tion time could be scripted. We categorized the software according to
their average runtime.

We also tested 26 benign applications with different
workloads running in the standard and uncertain environ-
ment (see Table 11 in the Appendix for the list of these ap-
plications). The workloads were characterized under three
levels: light, medium and heavy, which corresponded to test,

9



TABLE 3: Percentage of system calls perturbed running malware with different thresholds in the uncertain environment using non-intrusive
strategies.

Percentage of all syscalls
perturbed

Percentage of connection-related
calls perturbed

Percentage of buffer-related
calls perturbed

10% 50% Dynamic 10% 50% Dynamic 10% 50% Dynamic
Flooders 9.74% 39.31% 37.91% 10.13% 59.29% 36.68% 6.58% 23.35% 24.92%
Spyware 2.89% 25.79% 14.33% 7.14% 48.15% 0.00% 3.06% 31.06% 0.41%

Trojan 8.09% 27.07% 21.17% 9.52% 62.14% 17.00% 7.14% 15.22% 1.81%
Viruses 5.02% 28.62% 23.47% 9.56% 47.78% 12.69% 4.96% 21.87% 17.27%
Worms 0.05% 15.67% 11.04% 9.86% 60.97% 8.11% 8.97% 14.37% 16.27%

All 0.41% 28.39% 19.80% 9.87% 60.97% 15.69% 6.83% 21.10% 13.81%

TABLE 4: Percentage of system calls perturbed running malware with different thresholds in the uncertain environment using intrusive strategies.
Percentage of all syscalls

perturbed
Percentage of connection-related

calls perturbed
Percentage of buffer-related

calls perturbed
10% 50% Dynamic 10% 50% Dynamic 10% 50% Dynamic

Flooders 8.22% 39.28% 39.11% 9.56% 49.57% 38.37% 3.50% 23.11% 30.69%
Spyware 4.38% 26.39% 15.02% 16.62% 51.25% 37.96% 0.64% 27.14% 0.07%

Trojan 6.90% 35.16% 25.08% 12.49% 56.62% 19.45% 3.58% 27.47% 6.08%
Viruses 6.49% 23.03% 28.14% 12.96% 52.34% 14.30% 8.94% 22.32% 24.19%
Worms 3.92% 22.93% 13.26% 6.53% 60.59% 8.15% 3.52% 19.86% 33.24%

All 6.26% 29.90% 26.27% 11.26% 53.55% 26.79% 4.47% 24.04% 19.36%

TABLE 5: Percentage of system calls perturbed running benign software with different thresholds in the uncertain environment using non-
intrusive strategies.

Percentage of all syscalls
perturbed

Percentage of connection-related
calls perturbed

Percentage of buffer-related
calls perturbed

10% 50% dynamic 10% 50% dynamic 10% 50% dynamic
IO 1.24% 7.65% 2.60% 5.94% 23.40% 2.50% 0.94% 6.34% 34.16%

CPU 3.42% 10.72% 0.10% 0.00% 1.97% 0.00 3.39% 10.16% 0.02%
All 2.40% 9.28% 1.28% 2.79% 12.04% 1.18% 2.24% 8.36% 15.99%

TABLE 6: Percentage of system calls perturbed running benign software with different thresholds in the uncertain environment using intrusive
strategies.

Percentage of all syscalls
perturbed

Percentage of connection-related
calls perturbed

Percentage of buffer-related
calls perturbed

10% 50% dynamic 10% 50% dynamic 10% 50% dynamic
IO 1.21% 5.62% 8.20% 3.57% 20.14% 2.50% 0.95% 3.88% 50.93%

CPU 3.34% 11.82% 2.40% 0.03% 2.01% 1.00% 3.49% 12.27% 8.10%
All 2.34% 8.91% 5.13% 1.69% 10.53% 1.71% 2.30% 8.33% 28.21%

train, and ref level for SPEC CPU2006, and first, middle-
most, and last-level in the Phoronix Test Suite. On all three
different workloads, our results showed that two benign
software were adversely affected by non-intrusive strategies
and nine software were affected by intrusive strategies (see
Table 7). Further, there were no significant changes on the
percentages of total system calls perturbed, connection-
related system calls perturbed and buffer-related system
calls perturbed with the change of workloads for both
types of perturbation strategies. The results indicate that the
workload type of the tested software does not impact the
program outcome in the uncertain environment for the two
sets of perturbation strategies we used.

4.4 Effects of Uncertainty on Application Execution
In this section, we describe how CHAMELEON can leverage
random perturbations to thwart malware samples, from
poorly-programmed to evasive ones, and also to aid the
discovery of bugs in benign software.

4.4.1 Effects of Uncertainty on Malware
Black Vine We simulated a watering hole attack similar
to the Black Vine malware from Symantec [1]. This attack
has three main components: a Trojan, a backdoor and a
keylogger. First, the attacker sends a phishing e-mail to a
user with a link for downloading the Trojan encryption tool.
If the user clicks on the link and later uses the Trojan to
encrypt a file, the tool downloads and executes a backdoor

from a C&C server while encrypting the requested file.
Then, the backdoor copies the directory structure and the
ssh host key from the user’s machine into a file and sends it
to the C&C server. After the backdoor executes, the attacker
deletes any traces of the infection without affecting the
Trojan’s encryption/decryption functionality. The attacker
will also install a keylogger to obtain root privileges. Next,
the backdoor runs a script that uploads sensitive data to the
C&C server.

The Trojan is written in C using libgcrypt for encryption
and decryption. It uses the curl library for downloading
the backdoor from the Internet. In our simulation we used
the logkeys keylogger [17]. The backdoor script uses scp for
sending the data to the C&C server.

From the system call traces we collected, the first ma-
licious behavior occurred when the backdoor was being
configured, with a sys_write() invoked with a buffer
parameter starting with \177ELF. This behavior caused the
threshold to increase to tA1 on the sys_write() system
call. Later, three pairs of sys_dup2() with file descriptors
0 and 1 are invoked afterwards to execute the backdoor. The
threshold on the three sys_dup2() was increased to tA2.
Then, when sys_read() on the ssh host key files was in-
voked, the threshold decreased to td. Finally, the keylogger
started, sys_write() was invoked to write to a log file
and sys_connect() and sys_sendto() were invoked
for the backdoor to communicate with the C&C server. The
probability for the simulated malware to gain privilege and

10



TABLE 7: Impact of non-intrusive and intrusive strategies on 26 benign software from Phoronix Test Suite and SPEC CPU for different workloads
in the uncertain environment (static threshold 10%).

Percentage of
syscalls perturbed

Percentage of
connection-related
syscalls perturbed

Percentage of
buffer-related

syscalls perturbed

Number of
Crashes

Workload Non-intrusive Intrusive Non-intrusive Intrusive Non-intrusive Intrusive Non-intrusive Intrusive
Light 4.3% 5.1% 0.0% 0.1% 2.9% 4.2% 2 9

Medium 5.8% 6.3% 0.2% 0.3% 3.1% 3.7% 2 9
Heavy 5.2% 5.9% 0.2% 0.2% 3.5% 3.0% 2 9

exfiltrate data is under (1 − tA1) × (1 − tA2)
3 × (1 − td%),

which is 0.14%. In our 15 experiments, nine crashed before
setting up the backdoor, four crashed before starting the
keylogger, and two crashed before communicating with the
C&C server.
Poorly-written Malware. We also evaluated a poorly-
programmed malware sample [69], which splits its infection
operation into two threads: the first (Code 1) gets access
permissions to a given directory whereas the second waits
for access permissions to infect the files in the directory
(Code 2).

1 get_permissions();
2 finish();

Code 1: Thread 1

1 sleep(TIME);
2 infect();

Code 2: Thread 2.

The threads are synchronized using a sleep call instead
of a system lock, which can be considered a poor pro-
gramming practice, because different systems might have
different sleep times. While running in CHAMELEON’s un-
certain environment, unexpected sleep responses may wake
up Thread 2 before accesses permissions are granted by
Thread 1, thus causing the malware to fail. In our 15 tests,
the sample failed 12 times because of the short sleep time
(CHAMELEON’s perturbations caused a decrease in the sleep
time). In the three times the sample got permissions, it was
mitigated by the increased perturbation threshold due to the
frequent invocation of a system call (the sample iterated the
/proc folder to find process identifiers).
Evasive Samples Advanced malware use a number of eva-
sive techniques to avoid being detected while executing in
sandboxes and/or antivirus (AV) emulators. A popular eva-
sion method is execution stalling, i.e., malware postpones
its malicious behavior until the sandbox times out [71].
Execution stalling techniques were identified in up to 64%
of all Linux samples considered in a longitudinal study [46].
Malware samples stall their executions by employing dis-
tinct techniques, such as:
1) Stalling Strategy 1: malware performs a configurable
and random long sleep before and during exhibiting its
malicious behavior aiming to trigger sandbox execution
timeouts.
2) Stalling Strategy 2: malware performs a great number of
memory allocations (e.g. malloc) to slow down its opera-
tion while running under an emulator that traps memory
accesses.
3) Stalling Strategy 3: malware delays its execution by per-
forming long and costly computations, such as float point-
based operations—as emulating float-based operations is
hard and often results in sandboxes timeouts.

We studied stalling tactics by armoring a malware sam-
ple with these three evasive techniques independently in-
vestigated how CHAMELEON thwarts their operations. The

TABLE 8: Malware with evasive techniques running in the standard
OS and in CHAMELEON.

Evasive
Strategies

Percentage
of syscalls
perturbed

Percentage
of buffer bytes

perturbed

Execution results
in CHAMELEON

Stalling 1 3.07% 0.07% Operation not permitted
Stalling 2 2.31% 0.68% Segmentation Fault
Stalling 3 3.02% 0.46% Operation not permitted

malware sample was chosen as a challenging case because
it would not set up any backdoor, nor would it inject ma-
licious payloads to other executables, and most of the files
the sample accessed were under the corruption protection
mechanism. The sample would: i) fingerprint the environ-
ment to get an infection identifier; ii) install a proxy to infect
the browser; iii) infect the DNS subsystem modifying the
default routes; and iv) finally remove all the logs generated.
The analyzed sample would not set up any backdoor, nor
would it inject malicious payloads to other executables.

We ran these three different scenarios using the three
different stalling techniques in both the standard environ-
ment and under CHAMELEON. In the standard environment,
the malware sample could effectively exhibit its malicious
behavior under all three scenarios. In CHAMELEON, config-
ured with a dynamic threshold and non-intrusive strategies,
the sample failed to achieve its goal. We measured how each
stalling strategy was perturbed and summarized the results
in Table 8. CHAMELEON silenced approximately 3% of sys-
tem calls in the perturbation set, and perturbed less than
1% of buffer bytes. The percentage is small because of the
corruption protection mechanism, which prevented many
perturbations. For all three evasive scenarios, CHAMELEON
mitigated the malware through either crash or segmentation
fault. With the Stalling Strategy 1 and Stalling
Strategy 3, the malware sample terminated earlier (com-
pared to executions in the standard environment), due
to the perturbation on the read system call. In the user
space, the malware sample was deceived with an error
message “Operation not permitted in accessing file”. With
Stalling Strategy 2, the malware sample terminated
with a segmentation fault due to the perturbation on mmap
system call. The malware saw the memory allocation failure
and terminated without executing malicious behavior, as
the malware assumed it was running under an emulator.
Notice that these samples successfully executed outside of
CHAMELEON environment, thus the imposed perturbations
are the only responsible for their unsuccessful execution.
The OS-related error messages are due to CHAMELEON’s
perturbations messing with malware internal states, thus
resulting in invalid requests.

4.5 CHAMELEON evolves over time
Since CHAMELEON has demonstrated its potential in mal-
ware mitigation, we further discuss whether CHAMELEON
can stand the test of time by extending the malware sample

11



set and testing them on newer version systems. The ex-
tended set contains 5,679 Linux malware samples collected
from Virustotal [34] and VirusShare [33]. In this set, 273
samples can successfully attack our new testing systems,
running Linux Ubuntu 4.15.0-20-generic version (Ubuntu
18.04).

We carried out the experiments with per-system call
threshold and randomly pick non-intrusive and intrusive
strategies. The new results showed that 89.38% of the
malware samples are mitigated, with 43.59% of the mal-
ware hampered and 45.79% crashed. Compared with prior
experiments on Ubuntu 12.04 (six years before the new
testing system), which mitigated around 90% of the malware
(Figure 3), the new results corroborated the old ones. It is
also safe to say that CHAMELEON can evolve with malware
over time.

Further, we measured the detection rates of existing
Anti-virus software on this extended set through Virustotal.
The top 10 highest detection rates (ranging from 65% -85%)
with their company names are listed in Table 9.
TABLE 9: TOP-10 AV Detection. The best rate of 85% is ssmaller than
the achieved by CHAMELEON.

AV Detection (%) AV Detection (%)
Ikarus 85.61% AVG 70.58%

Kaspersky 79.83% Symantec 69.80%
ESET-NOD32 78.81% TrendMicro-HouseCall 68.61%

GData 73.16% Sophos 67.96%
Avast 72.99% Qihoo-360 64.37%

4.5.1 Effects of Uncertainty on Benign Software

TABLE 10: Software bugs found by CHAMELEON
Software Bugs

Vim viminfo: Illegal starting char [32]

tar
Fail using ’-C’ option extracting archive with empty
directories [25]
“Operation not permitted” when extracting [26]

Thunderbird Unable to locate mail spool file [30]
segmentation fault (core dumped) [28]

Firefox Bus error (core dumped) [10]
Fatal IO error (Operation not permitted) on X server [11]

CHAMELEON’s perturbations also affect benign appli-
cations. Whereas we observed that common benign appli-
cations can handle the unexpected system call responses
in most of all experiments, we identified some crashes
during their execution. Therefore, to better understand
CHAMELEON’s impact and to identify how benign software
could improve to better adapt to the perturbations, we
manually inspected all crashed execution traces.

We analyzed the execution logs, from the last system call
executed (including its parameters) until the first system call
executed in a reversed order. We observed that usually the
failure of one system call with a specific parameter would
lead to application early termination. Therefore, locating
the corresponding system call causing the crash and its
corresponding parameters would reveal the reason for the
crash, and could potentially help the process of finding
bugs. CHAMELEON is capable of perturbing every system
call with a probability (given by the perturbation threshold),
and logging the execution details (perturbations, system
calls invoked and their parameters) about the crash.

During our analysis, we found that the crashes in Vim,
tar, Mozilla Firefox and Thunderbird were in fact soft-
ware bugs previously reported on Launchpad and Bugzilla

[15, 4]. Because each system call was perturbed with a
probability, the perturbations causing the crash in different
tests varied on the same software (we ran each software
fifteen times and averaged the results). Therefore, different
bugs could be found for one piece of software. Table 10 lists
the bugs in detail. Besides general bugs, e.g. Segmentation
Fault, Fatal I/O error and Bus error, we found several bugs
of particular interest.

.viminfo [32]: This bug causes Vim to fail to launch
because of an erroneous .viminfo file. The .viminfo file is
used to record information about the last edits from a user.
If the user exits Vim and later re-starts it, the .viminfo file
enables the user to continue where he left it off [31]. In our
experiment, the .viminfo error was caused by silencing a
sys_write on .viminfo file. In the reported bug, the error
was caused by an operation using a special character not
recognized by Vim before exiting. With CHAMELEON, we
identified that the reason for Vim stopping launching is the
failure of sys_open on .viminfo. This shows the lack of
fail-safe defaults from Vim.

tar -C empty directory [25]: This bug occurs when one
extracts empty directories inside an archive using the ‘-C’
option to change directories. The cause for the bug is tar
using mkdir (file_name, mode) instead of mkdirat
(chdir_fd, file_name, mode) to extract a directory.
With CHAMELEON, we identified the failure of creating
a new file descriptor with sys_openat in our log file,
showing that tar currently do not handle failures on that
particular invocation of the system call well.

Thunderbird mail spool file [30]: The bug causes Thun-
derbird to hang when linking an existing email account.
Thunderbird uses the spool file to “help” the user set up an
email account with the assumption that the email providers
set up SMTP, ports, and security configurations very well.
Unfortunately, few of them are correctly configured [29].
From the log files of CHAMELEON, we identified that the
failure in linking an account was caused by a failure in
sys_read of spool file.

Our results show that the crashes and adverse effects
in the analyzed benign software were in many cases ac-
tually caused by bugs (previously reported) instead of the
perturbations applied by CHAMELEON. It appears that the
perturbations just accelerated the exposure of such bugs,
thus, showing that CHAMELEON could be also potentially
applied to test software reliability.

5 DISCUSSION

This section will discuss about the insights and limitations
based on CHAMELEON’s findings.

5.1 Defensive Programming

The adoption of defensive programming for malware writ-
ing increases its development costs both in human and in
time resources. The paradigm of defensive programming is
based on the assumption that runtime errors in software
are going to arise for a variety of reasons (including a
potentially malicious OS) and that software needs to be
written so as to be resilient to such errors [7]. This requires
software developers (or malware writers for that matter) to

12



include assertions in programs at runtime, and to write tests
suites that anticipate different error scenarios and discover
unknown behaviors.

Upon encountering invalid inputs, it is advantageous
for malware to fail early and quickly to prevent leaving
fingerprint of their actions in the system. Therefore, it is
plausible to hypothesize that, under these conditions, mal-
ware writers would need to write more reliable code so as
to successfully operate under runtime uncertain conditions.

Currently, a great number of malware source code found
in the wild exhibit poor programming practices, such as
lack of error checking routines. Even more noticeable, many
malware implementations are flawed, as seen on numerous
ransomware decryption keys retrieved via exploitation of
flawed implemented routines [80, 44, 54, 72, 83].

We acknowledge that the adoption of a paradigm such
as CHAMELEON could further incentivize malware writers
into adopting defensive programming and, consequently,
writing “resilient” malware. However, this would come
under higher costs for malware writers.

Defensive programming might seem difficult to grasp in
the beginning, like any new concept in software develop-
ment. In fact, this concept has been well established and
many programming languages, such as D, have already
supported pre- and post-conditions as fundamental parts
of their syntax [14]. With the increasing need of defensive
programming, programmers and testers can work on de-
veloping automated test suites to anticipate different error
scenarios and discover unknown behaviors. In the era of
cloud computing combined with the Internet of Things
(IoT) and Artificial Intelligence (AI), more and more small
services will interact with one another dynamically, mak-
ing defensive programming essential to ensure composed
system reliability. We hypothesize that defensive program-
ming will become built-in design characteristics of software
development.

5.2 Trade-off: Performance vs. Mitigation Effect

Strategy: There are trade-offs in selecting a perturbation
strategy. Non-intrusive perturbation strategies that delay
system calls, decrease the priority, or silence the system calls
with error returns, aim to slow down program execution,
potentially buying time for a deep learning model to oper-
ate. End users might experience a system slowdown in ex-
change for more security. Intrusive perturbation strategies,
which are more aggressive, are designed for organizations
with higher security expectations.

Process Delay strategy is different from suspending soft-
ware execution. A suspended execution stops suspicious
software from running and would not generate data for
a potential deep learning analysis. Process Delay, actually,
slows down software execution, potentially buying time for
deep analysis and allowing for a more accurate classification
of software which received borderline confidence levels
in classifications by a fast conventional machine learning
detector. Moreover, suspension of execution can be detected
by malware just by checking wall clock time.

Threshold: We acknowledge that the degree of uncer-
tainty is not a one-size-fits-all solution. Based on the needs
of the organization and its applications, CHAMELEON’s

perturbation threshold can be adjusted by a system ad-
ministrator according to the organization’s expectations and
requirements. Based on our manual analysis, an acceptable
static threshold is no more than 50% and a dynamic thresh-
old is no more than 95%. The perturbation threshold can
also be automatically adjusted following security policies.
For example, CHAMELEON can raise the threshold for a
given application if it passes a round of deep learning
classification.

Moreover, CHAMELEON can leverage an attribution-
based scheme for initial threshold assignment. If the soft-
ware has no attribution of origin, no supply chain, or its
origin is not trusted, CHAMELEON can set a higher default
threshold for the application. Conversely, if the application
is trusted, CHAMELEON can set a lower default threshold
for it. We leave such approaches for future work.

Comparison with existing AV: As Table 9 shows, the
best performed AV software produces a smaller detection
rate than CHAMELEON. In addition, CHAMELEON comple-
ments existing AV software, such as FireEye [19], whose
goals are either to identify the signature or monitor the
runtime behavior through isolating the software for a while
until a decision can be made. However, some software may
not exhibit its malicious behavior at the very beginning, or
confuse the AV software by demonstrating benign behaviors
for most of the time.

CHAMELEON enables lifelong execution for software
whose behaviors are hard to define and which cause border-
line classification decisions. During the software execution,
suspicious software will be placed in the uncertain environ-
ment when some borderline malicious behavior is detected,
and be transferred between the standard environment and
the uncertain environment multiple times.

Limitations: CHAMELEON is limited in mitigating well-
written malware. Highly fault-tolerant malware will have
a chance to succeed CHAMELEON. Further, if an adminis-
trator decides to whitelist common benign software from
CHAMELEON, in-memory-only attacks [40] that inject them-
selves in the address space of a benign software will also
succeed.

5.3 Linux vs. Windows

Linux Malware: Linux promotes open source code and
streamlines prototyping. This makes CHAMELEON to be
deployed in Linux because of its resources in kernel pro-
gramming. Linux also makes it easier for manual analy-
sis at the beginning to understand the malware behavior
However, finding Linux-based malware samples is chal-
lenging. First, the availability of Linux malware samples
is more restricted in comparison to other platforms, such
as Windows. For instance, the Cozzi et al’s work [46], the
largest and most current Linux malware study, leveraged
10,000 malware samples whereas Windows studies may
encompass million samples [51]. Second, Linux malware
is distributed among multiple architectures, as the Linux
environment itself, which also limits the number of available
samples for a particular platforma (e.g., x86 desktops). As
an example, only 30% of all samples considered in Cozzi et
al’s study [46] were x86 desktop malware samples. Finally,
Linux malware is not only distributed in a self-contained

13



form, as most Windows executables, but also as shared
objects and payloads, which must be executed with a proper
loader or hosting environment for its injection.

In CHAMELEON, we reverse-engineered all collected
samples to understand their loading requirements and li-
brary dependencies. We installed all required library (in
their outdated versions) and provided configuration files
for every sample to ensure a successful execution. From
Cozzi’s x86 desktop malware samples [46], we successfully
provided a suitable execution environment for 100 samples,
and selected them for analysis. Even though this number
is small especially compared to malware studies in Win-
dows, we ensured that these samples were diverse, fully
demonstrated their malicious behaviors, and allowed the
evaluation of CHAMELEON’s proof-of-concept prototype.

For future work, a usability study in CHAMELEON with
a variety of benign software is warranted. We also plan
to evaluate CHAMELEON with more diverse threats. For
instance, we plan to extend CHAMELEON protection scope
to cover in-memory only attacks [39] by adding support
to memory-related system calls interposition and memory
snapshots acquisition, and also to detect behaviors of fre-
quent reads and writes into the Windows export table,
required by in-memory-only malware to resolve imports
and exports and get the malicious payload to execute.

CHAMELEON in Windows: Porting CHAMELEON Win-
dows is necessary because Windows system is the most tar-
geted OS by malware writers. Windows and Linux system
calls are different, while there are some correspondences
between the two systems [21], which are relevant for a
future implementation of CHAMELEON in Windows. For ex-
ample, for process control, Windows has CreateProcess,
ExitProcess and WaitForSingleObject, while Linux
has fork, exit and wait. For file manipulation, Windows
has CreateFile, ReadFile and WriteFile, while Linux
has open, read and write.

System call hooking in Windows can be implemented
similarly to what we did in Linux for CHAMELEON by
leveraging a driver that hooks the System Service Dispatch
Table (SSDT), a task still allowed in 32-bit systems, but made
challenging in 64-bit kernels because of the Kernel Patch
Protection (KPP) mechanism. Therefore, CHAMELEON’s im-
plementation in 64-bit kernels would require Windows sup-
port. Alternatively, CHAMELEON could be implemented in
Windows by relying on OS callbacks and filters, a solution
adopted by newer sandbox solutions [42]. For instance, a
file-system filter provides a pre-operation callback which al-
lows one to deny access to a given file right before an access
attempt, thus achieving the same goal of introducing uncer-
tainty to OS operations. In Windows, the EPROCESS [62] is
an equivalent structure to the Linux task_struct. There-
fore, CHAMELEON can be implemented in Windows by
adding the four fields mentioned earlier in Section 3.3 (the
environment, the file descriptor list, the strategies and the
threshold) to EPROCESS to control the process environment.
However, this modification requires access to Windows
source code and must be performed in-house.

Future work porting CHAMELEON to Windows OS and
performing an evaluation with a larger sample size of mal-
ware is warranted.

5.4 CHAMELEON evolves over time
Since CHAMELEON is capable of disturbing malware ex-
ecution and discovering benign software bugs, the next
question becomes whether this solution could stand the test
of time. We consider the decay of CHAMELEON are affected
by three factors: malware detection scheme, system design
and implementation, and configuration parameters.

Malware detection scheme: CHAMELEON targets for
any hybrid detection scheme that works in a two-phase
manner. Such detection scheme has been proposed more
than a decade ago [45, 67], and is still active in the literature
[88, 60]. Therefore, we believe the speed for CHAMELEON to
decay because of the malware detection scheme is relatively
slow.

System design: CHAMELEON by design is a loadable
kernel module. As most kernel modules or drivers, e.g.
USB drivers or Bluetooth drivers, CHAMELEON requires to
be updated when operating systems upgrade. For example,
when sys_call_table is no longer exported, a driver will
have to add the kallsyms_lookup_name function; when
set_memory_rw is no longer exported, a driver will have to
implement its own. As these new functions usually require
fewer than 5 lines of code, it is safe to say CHAMELEON will
not decay fast because of the system design.

Configuration parameters: CHAMELEON uses the
threshold parameter to determine the strength of the un-
certainties. As malware and benign applications evolve over
time, the threshold parameter requires to be fine tuned
by the system administrator. In the future, the fine tuning
can be done more efficiently with the advance of machine
learning algorithms. Given the needs of organizations and
companies, the machine learning algorithms can provide
the most suitable set of parameters. Therefore, CHAMELEON
is able to stand the test of time by integrating advanced
algorithms.

As the result from the new experiments shows,
CHAMELEON is able to survive from systems ranging from
Ubuntu 12.04 to Ubuntu 18.04.

6 RELATED WORK

Our work intersects the areas of malware detection, soft-
ware diversity and deception, and fuzz testing. This section
summarizes how they have been used in software design
and highlights under-studied areas.

Malware Detection Techniques have been evolving
from static, signature-based approaches [82] to dynamic,
behavior-based techniques [49, 45]. Whereas the first may
be defeated by code obfuscation and malware variants, the
latter overcome these issues by continuously monitoring
binaries execution, either at API [85, 73] or system-call [41]
levels. Dynamic solutions are able, for instance, to detect
sensitive data leaking via system-level taint tracking [86]
and keystroke logging via data-flow analysis [61]. In this
work, we leveraged the knowledge developed by previ-
ous dynamic malware detection solutions to implement
CHAMELEON’s API monitoring modules.

To detect malware, the data collected during dynamic
analysis procedures is often modelled as behaviors and
these are used as input for some decision algorithm. Ma-
chine learning-based approaches has been leveraged for

14



behavior modelling and decision with reasonable results.
Kumar et al. used K-means clustering [57] to differentiate
legitimate and malicious behaviors based on the NSL-KDD
dataset. Abed et al. used bags of system calls to detect
malicious applications in Linux containers [35]. Mohaisen et
al. [64] introduced AMAL to dynamically analyze malware
using SVM, linear regression, classification trees, and kNN.

Behaviors modelling, however, has become challeng-
ing as applications are becoming increasingly diverse [58],
which raises false positive rates. In this scenario and as
alternative for machine-learning, recent efforts to apply DL
for malware detection have made great successes. Pascanu
et al. [66] used recurrent neural networks and echo state
networks to model API system calls and C run-time library
calls, and achieved accurate results. Li et al. leveraged
an AutoEncoder and a deep belief network on the now
outdated KDD99 dataset, and achieved a higher detection
rate [60]. As a drawback, current DL-based malware detec-
tors work in an offline manner due to the long detection
time and large computation resource needed. Therefore,
CHAMELEON emerges as an alternative to bridge the gap
between the efficiency of ML classifiers and the effectiveness
of DL classifiers while monitoring binaries execution in real
time.

Most of the malware detection solutions were first im-
plemented as software components, such as using patched
libraries or implementing kernel hooks, a strategy also
followed by CHAMELEON. Recently, hardware-based ap-
proaches such as Virtual Machine-powered solutions [47, 2]
emerged as alternatives for system monitoring without re-
quiring patching. Whereas these approaches cannot be con-
sidered practical due to the need of developing a hypervisor,
it opens opportunity for the development of an unobtrusive
CHAMELEON’s implementation in the future.

Deception: To a limited extent, deception has been an
implicit technique for cyber warfare and defense, but is
under-studied as a fundamental abstraction for secure sys-
tems. Honeypots and honeynets [74] are systems designed
to look like production systems in order to deceive intruders
into attacking the systems or networks so that the defenders
can learn new techniques.

Several technologies for providing deception have been
studied. Software decoys are agents that protect objects from
unauthorized access [53]. The goal is to create a belief in the
attacker’s mind that the defended systems are not worth
attacking or that the attack was successful. The researchers
considered tactics such as responding with common sys-
tem errors and inducing delays to frustrate attackers. Red-
teaming experiments at Sandia tested the effectiveness of
network deception on attackers working in groups. The
deception mechanisms at the network level successfully
delayed attackers for a few hours. Almeshekah and Spaf-
ford [38] further investigated the adversaries’ biases and
proposed a model to integrate deception-based mechanisms
in computer systems. In all these cases, the fictional systems
are predictable to some degree; they act as real systems
given the attacker’s inputs.

True unpredictability requires randomness at a level that
would cause the attacker to collect inconsistent results. This
observation leads to the notion of inconsistent deception [65],
a model of deception that challenges the cornerstone of

projecting false reality with internal consistency. Sunet al.
[77, 76] also argued for the value of unpredictability and de-
ception as OS features. CHAMELEON explored non-intrusive
unpredictable interferences to create an uncertain environ-
ment for software being deep analyzed after an initial bor-
derline classification.

Fuzzing: Fuzzing is an effective way to discover coding
errors and security loopholes in software, operating sys-
tems, and networks by testing applications against invalid,
unexpected, or random data inputs. Fuzzers can be divided
into two categories: generational fuzzers, that construct
inputs according to some provided format specification (e.g.
SPIKE [37] and PEACH [48]), and mutational fuzzers, that
create inputs by randomly mutating analyst-provided or
randomly-generated seeds.(e.g. AFL [87], honggfuzz [79],
and zzuf [52]). Generational fuzzing requires significant
manual effort to create test cases and therefore is hard to
be scalable. Most of recent fuzzers are based on mutational
fuzzers [68]. CHAMELEON is a mutational fuzzer that ran-
domly applies perturbations to invoked system calls during
software execution.

Fuzz testing leveraging system call behaviors has shown
its potential in scalability and effectiveness. Trinity [16], for
example, randomizes system call parameters to test the vali-
dation of file descriptors, and found real bugs [3], including
bugs in the Linux kernel. BALLISTA [55] tests the data type
robustness of the POSIX system call interface in a scalable
way, by defining 20 data types for testing 233 system calls
of the POSIX standard. CHAMELEON can also be considered
as a fuzz tester at the OS system call API to understand how
resilient an application is to a particular type of misbehavior.
KLEE [43] uses system call behaviors to build a model and
generate high-coverage test cases to the users, and this mo-
tivated following work in coverage guided fuzzers, such as
AFL [87], honggfuzz [79], and zzuf [52], which use coverage
as feedback from the target program to guide the mutational
algorithm to generate inputs. While CHAMELEON’s goal is
not to find software bugs, CHAMELEON can borrow this
idea by keeping track of a set of interesting perturbations
that triggered new code paths and focus on mutating the
interesting inputs while generating new perturbations.

7 CONCLUSION

This work introduces a detailed description of the design
and implementation, and new extensions of CHAMELEON,
a Linux framework which allows the introduction of uncer-
tainty as an OS built-in feature to rate-limit the execution
of possible malware. CHAMELEON allows the scheme of
two-phase malware detection during software lifelong ex-
ecution. After the first phase makes a borderline detection,
potential malware will be disturbed when the second phase
detection is under way.

CHAMELEON offers two environments for software run-
ning in the system: (i) standard, which works according
to the OS specification and (ii) uncertain, for any software
that receives a borderline classification from the first phase
detection, where a set of perturbations will be included.

We evaluated CHAMELEON by first manually analyzing
the execution of 113 common applications and 100 malware
samples from various categories. The results showed that

15



a dynamic, per-system call threshold caused various levels
of disruption to only 10% of the analyzed benign software.
The effects of the uncertain environment in malware was
more pronounced with 92% our studied malware samples
failing to accomplish their tasks. Compared to the results
obtained for a static threshold, 20% more benign software
succeeded and 24% more malware crashed or were ham-
pered in the uncertain environment. The results were then
further corroborated by an extended dataset (5,679 Linux
malware samples) on a newer system.

We also analyzed the behavior of crashed benign soft-
ware, and found that many of the crashes were actually
caused by software bugs. Several bugs were reproduced for
Vim, tar, Mozilla Firefox and Thunderbird.

Besides filling the gap between two-phase malware
detection scheme, CHAMELEON increases attackers’ work
factor. The effort of writing good and small malware is
not lengthy endeavor. However, in newer system today,
it is hard to use a single small malware to bypass all
the protection mechanisms. The goal of CHAMELEON is to
have attackers spend at least the same effort as software
engineers.

The idea of making systems less predictable is auda-
cious, nonetheless, our results indicate that an uncertain
system can be feasible for raising an effective barrier against
sophisticated and stealthy malware. The degree of uncer-
tainty is not a one-size-fits-all solution—we expect an ad-
ministrator to dial in the level of uncertainty to the needs of
the organization and applications.

ACKNOWLEDGMENTS

We thank NSF CNS-1464801, CNS-1228839, CNS-1161541,
DGE-1303211, ACI-1229576, CNS-1624782, US-Brazil Work-
shop on Cyber Security and Privacy, and Brazilian CNPq.

REFERENCES

[1] The black vine cyberespionage group http://www.symantec.
com/content/en/us/enterprise/media/security response/
whitepapers/the-black-vine-cyberespionage-group.pdf.

[2] Bromium end point protection https://www.bromium.com/.
[3] Bugs found by trinity.
[4] Bugzilla.
[5] Code – fu: The art of defensive programming https://sov.tech/

code-fu-defensive-programming/.
[6] Coverage.py https://github.com/msabramo/coverage.py.
[7] Defensive programming - swc osg workshop.
[8] Dionaea - a malware analysis honeypot http://www.edgis-

security.org/honeypot/dionaea/.
[9] Emma: a free java code coverage tool http://emma.sourceforge.

net/.
[10] Firefox:Bus error (core dumped).
[11] Firefox:fatal io error 11 (resource temporarily unavailable) on x

server :0.
[12] Gcov https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[13] Gnu project http://www.gnu.org/software/software.html.
[14] An in-depth look at defensive programming https:

//www.zuehlke.com/blog/an-in-depth-look-at-defensive-
programming/.

[15] Launchpad.net.
[16] Lca: The trinity fuzz tester.
[17] Logkeys ubuntu http://packages.ubuntu.com/precise/admin/

logkeys.
[18] McAfee Virtual Criminology Report - 2009.
[19] Modern malware exposed http://www.nle.com/literature/

FireEye modern malware exposed.pdf.

[20] The modern malware review http://media.paloaltonetworks.
com/documents/The-Modern-Malware-Review-March-
2013.pdf.

[21] One-to-one correspondence of windows and linux system
calls http://www.cs.columbia.edu/∼jae/4118-LAST/L02-intro2-
osc-ch2.pdf.

[22] The phoronix test suite http://www.phoronix-test-suite.com/.
[23] Spec cpu 2006 https://www.spec.org/cpu2006/.
[24] Symantec Internet Security Threat Report 2013. http://www.

symantec.com/content/en/us/enterprise/other resources/b-
istr main report v18 2012 21291018.en-us.pdf.

[25] tar:fails using ’-c’ option extracting archive with empty directories.
[26] tar:operation not permitted.
[27] Thc: the hacker’s choice https://www.thc.org/.
[28] Thunderbird crashes with segmentation fault.
[29] Thunderbird spool file https://support.mozilla.org/en-US/

questions/1021171.
[30] Thunderbird:unable to locate mail spool file.
[31] Viminfo documentation http://vimdoc.sourceforge.net/

htmldoc/starting.html#viminfo-file.
[32] viminfo:illegal starting char in line.
[33] Virusshare https://virusshare.com/.
[34] Virustotal https://www.virustotal.com/.
[35] Amr S Abed, T Charles Clancy, and David S Levy. Applying bag

of system calls for anomalous behavior detection of applications
in linux containers. In 2015 IEEE Globecom Workshops, pages 1–5.
IEEE, 2015.

[36] National Security Agency. Security-enhanced linux.
[37] Dave Aitel. An introduction to spike, the fuzzer creation kit.

presentation slides), Aug, 1, 2002.
[38] Mohammed H. Almeshekah and Eugene H. Spafford. Planning

and integrating deception into computer security defenses. In New
Security Paradigms Workshop, 2014.

[39] Meisam Navaki Aref, Geoffrey Alexander, Hooman Rokham,
Aokun Chen, Michalis Faloutsos, Xuetao Wei, Daniela Seabra
Oliveira, and Jedidiah R. Crandall. Faros: Illuminating in-memory
injection attacks via provenance-based whole-system dynamic
information flow tracking. In DSN 18, 2018.

[40] Meisam Navaki Arefi, Geoffrey Alexander, Hooman Rokham,
Aokun Chen, Michalis Faloutsos, Xuetao Wei, Daniela Seabra
Oliveira, and Jedidiah R Crandall. Faros: Illuminating in-memory
injection attacks via provenance-based whole-system dynamic
information flow tracking. In International Conference on Dependable
Systems and Networks (DSN), pages 231–242. IEEE, 2018.

[41] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. Ttanalyze: A
tool for analyzing malware. In 15th European Institute for Computer
Antivirus Research (EICAR), 2006.

[42] Marcus Felipe Botacin, Paulo Lı́cio de Geus, and André Ri-
cardo Abed Grégio. The other guys: automated analysis of
marginalized malware. Journal of Computer Virology and Hacking
Techniques, 14(1):87–98, Feb 2018.

[43] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In USENIX Conference on Operating Sys-
tems Design and Implementation, 2008.

[44] Carbonite. Ransomware developers learn from the mistakes of
wannacry, notpetya. https://www.carbonite.com/blog/article/
2017/10/ransomware-developers-learn-from-the-mistakes-of-
wannacry-notpetya/, 2017.

[45] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song,
and Randal E. Bryant. Semantics-aware malware detection. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy,
2005.

[46] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Da-
vide Balzarotti. Understanding linux malware. In IEEE Symposium
on Security & Privacy, 2018.

[47] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee.
Ether: Malware analysis via hardware virtualization extensions.
In ACM Conference on Computer and Communications Security, 2008.

[48] Michael Eddington. Peach fuzzing platform. Peach Fuzzer, page 34,
2011.

[49] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense
of self for Unix processes. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 120–128, 1996.

[50] Tal Garfinkel et al. Traps and pitfalls: Practical problems in system
call interposition based security tools. In NDSS, volume 3, pages
163–176, 2003.

16

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-black-vine-cyberespionage-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-black-vine-cyberespionage-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-black-vine-cyberespionage-group.pdf
https://www.bromium.com/
https://sov.tech/code-fu-defensive-programming/
https://sov.tech/code-fu-defensive-programming/
https://github.com/msabramo/coverage.py
http://www.edgis-security.org/honeypot/dionaea/
http://www.edgis-security.org/honeypot/dionaea/
http://emma.sourceforge.net/
http://emma.sourceforge.net/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.gnu.org/software/software.html
https://www.zuehlke.com/blog/an-in-depth-look-at-defensive-programming/
https://www.zuehlke.com/blog/an-in-depth-look-at-defensive-programming/
https://www.zuehlke.com/blog/an-in-depth-look-at-defensive-programming/
http://packages.ubuntu.com/precise/admin/logkeys
http://packages.ubuntu.com/precise/admin/logkeys
http://www.nle.com/literature/FireEye_modern_malware_exposed.pdf
http://www.nle.com/literature/FireEye_modern_malware_exposed.pdf
http://media.paloaltonetworks.com/documents/The-Modern-Malware-Review-March-2013.pdf
http://media.paloaltonetworks.com/documents/The-Modern-Malware-Review-March-2013.pdf
http://media.paloaltonetworks.com/documents/The-Modern-Malware-Review-March-2013.pdf
http://www.cs.columbia.edu/~jae/4118-LAST/L02-intro2-osc-ch2.pdf
http://www.cs.columbia.edu/~jae/4118-LAST/L02-intro2-osc-ch2.pdf
http://www.phoronix-test-suite.com/
https://www.spec.org/cpu2006/
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
https://www.thc.org/
https://support.mozilla.org/en-US/questions/1021171
https://support.mozilla.org/en-US/questions/1021171
http://vimdoc.sourceforge.net/htmldoc/starting.html#viminfo-file
http://vimdoc.sourceforge.net/htmldoc/starting.html#viminfo-file
https://virusshare.com/
https://www.virustotal.com/
https://www.carbonite.com/blog/article/2017/10/ransomware-developers-learn-from-the-mistakes-of-wannacry-notpetya/
https://www.carbonite.com/blog/article/2017/10/ransomware-developers-learn-from-the-mistakes-of-wannacry-notpetya/
https://www.carbonite.com/blog/article/2017/10/ransomware-developers-learn-from-the-mistakes-of-wannacry-notpetya/


[51] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin
Li. Dl4md: A deep learning framework for intelligent malware
detection. In Proceedings of the International Conference on Data
Mining (DMIN), page 61. The Steering Committee of The World
Congress in Computer Science, 2016.

[52] S Hocevar. zzuf—multi-purpose fuzzer, 2011.
[53] N. Rowe J. Michael, M. Auguston, D. Drusinsky, H. Rothstein,

and T. Wingfield. Phase II Report on Intelligent Software Decoys:
Counterintelligence and Security Countermeasures . Technical
Report, Naval Postgraduate School, Monterey, CA, 2004.

[54] Kaspersky. A flawed ransomware encryptor. https://securelist.
com/a-flawed-ransomware-encryptor/69481/, 2015.

[55] Philip Koopman, John Sung, Christopher Dingman, Daniel
Siewiorek, and Ted Marz. Comparing operating systems using
robustness benchmarks. In The Sixteenth Symposium on Reliable
Distributed Systems. IEEE, 1997.

[56] Sandeep Kumar and Eugene H. Spafford. An application of
pattern matching in intrusion detection, 1994.

[57] Vipin Kumar, Himadri Chauhan, and Dheeraj Panwar. K-means
clustering approach to analyze nsl-kdd intrusion detection dataset.
International Journal of Soft, 2013.

[58] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai
Christodorescu, and Engin Kirda. Accessminer: Using system-
centric models for malware protection. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS ’10,
pages 399–412, 2010.

[59] Lhall. Introduction to writing shellcode.
[60] Yuancheng Li, Rong Ma, and Runhai Jiao. A hybrid malicious code

detection method based on deep learning. methods, 9(5), 2015.
[61] Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson, Somesh

Jha, and John C. Mitchell. A layered architecture for detecting ma-
licious behaviors. In Proceedings of the 11th International Symposium
on Recent Advances in Intrusion Detection, RAID ’08, pages 78–97,
2008.

[62] Microsoft. Windows epblock.
[63] MMD-0027-2014. Linux/bashdoor & small backdoor - at 0day

(shellshock): The fun has only just begun (part 1).
[64] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. Amal:

High-fidelity, behavior-based automated malware analysis and
classification. Computers & Security, 52:251 – 266, 2015.

[65] Vicentiu Neagoe and Matt Bishop. Inconsistency in deception for
defense. In New Security Paradigms Workshop, pages 31–38, 2007.

[66] Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Mari-
nescu, and Anil Thomas. Malware classification with recurrent
networks. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 1916–1920, 2015.

[67] Udo Payer, Peter Teufl, and Mario Lamberger. Hybrid engine for
polymorphic shellcode detection. In DIMVA, 2005.

[68] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing
by program transformation. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 697–710. IEEE, 2018.

[69] Brian Prince. Script fragmentation attack could allow hackers to
dodge anti-virus detection, 2018.

[70] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion,
and denial of service: Eluding network intrusion detection. Tech-
nical report, Secure Networks, Inc., Suite 330, 1201 5th Street S.W,
Calgary, Alberta, Canada, T2R-0Y6, 1998.

[71] Bert Rankin. Evasive malware – the art of doing nothing, Dec 19,
2016.

[72] Softpedia. Truecrypter ransomware dev leaves flaw in code
that lets victims decrypt files. https://news.softpedia.com/
news/truecrypter-ransomware-dev-leaves-flaw-in-code-that-
lets-victims-decrypt-files-503537.shtml, 2016.

[73] Norman Solutions. Norman sandbox whitepaper, 2003.
[74] L. Spitzner. Honeypots: Tracking Hackers. Addison Wesley Reading.
[75] R. Sun, X. Yuan, A. Lee, M. Bishop, D. E. Porter, X. Li, A. Gregio,

and D. Oliveira. The dose makes the poison-leveraging uncer-
tainty for effective malware detection. In 2017 IEEE Conference on
Dependable and Secure Computing, pages 123–130, 2017.

[76] Ruimin Sun, Andrew Lee, Aokun Chen, Donald E. Porter, Matt
Bishop, and Daniela Oliveira. Bear: A framework for understand-
ing application sensitivity to os (mis)behavior. In ISSRE, 2016.

[77] Ruimin Sun, Donald E. Porter, Daniela Oliveira, and Matt Bishop.
The case for less preditable operating system behavior. In Pro-
ceedings of the USENIX Workshop on Hot Topics in Operating Systems
(HotOS), 2015.

[78] Ruimin Sun, Xiaoyong Yuan, Pan He, Qile Zhu, Aokun Chen,
Andre Gregio, Daniela Oliveira, and Xiaolin Li. Learning fast and
slow: Propedeutica for real-time malware detection. arXiv preprint
arXiv:1712.01145, 2017.

[79] Robert Swiecki. Honggfuzz. Available online at: http://code. google.
com/p/honggfuzz, 2016.

[80] ThreatPost. Key flaw enables recovery of files encrypted by tor-
rentlocker. https://threatpost.com/key-flaw-enables-recovery-
of-files-encrypted-by-torrentlocker/108210/, 2014.

[81] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.
Porter. A study of modern linux api usage and compatibility: What
to support when you’re supporting. In Eurosys, 2016.

[82] G. Vigna and R. A. Kemmerer. NetSTAT: A Network-Based
Intrusion Detection Approach. ACSAC ’98, 1998.

[83] WeLiveSecurity. Ransomware is everywhere, but even black
hats make mistakes. https://www.welivesecurity.com/2016/
04/28/ransomware-is-everywhere-but-even-black-hats-make-
mistakes/, 2016.

[84] Sheng Wen, Wei Wu, and Aniello Castiglione. Cyberspace Safety
and Security: 9th International Symposium, CSS 2017, Xi’an China,
October 23–25, 2017, Proceedings, volume 10581. Springer, 2017.

[85] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward au-
tomated dynamic malware analysis using cwsandbox. volume 5.
IEEE, 2007.

[86] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and
Engin Kirda. Panorama: Capturing System-wide Information
Flow for Malware Detection and Analysis. ACM CCS 07, pages
116–127, November 2007.

[87] M Zalewski. Online; accessed 17-may-2017. american fuzzy lop.
[88] Symantec Endpoint Security - Prevent breaches with modern end-

point security. https://www.symantec.com/products/endpoint.

BIBLIOGRAPHY
Ruimin Sun is a Postdoctoral Research Associate at North-
eastern University. She received her Ph.D. from University
of Florida. She works on secure, reliable systems, and ma-
chine learning model protection.

Xiaoyong Yuan is a Ph.D student at University of Florida.
His research fields include deep learning, information secu-
rity, and cloud computing.

Marcus Botacin is a Ph.D. student at Federal University
of Paraná (UFPR). His main research interests are malware
analysis and hardware-assisted security.

Matt Bishop is a Professor at the University of California
at Davis. His research focuses on election processes, data
sanitization, and the insider problem. He is the author of
Computer Security: Art and Science.

Donald E. Porter is an Associate Professor at University
of North Carolina at Chapel Hill. Porter’s research involve
improving efficiency and security of computer systems.

André Grégio is an Assistant Professor at the Federal Uni-
versity of Paraná (UFPR). His research intersects computer
security and data science, e.g., effective malware analysis
and attack detection systems.

Xiaolin (Andy) Li is a Partner of Tongdun Technology,
heading the AI Institute. He was a Professor at the Univer-
sity of Florida. His research interests include deep learning,
cloud computing, security, and IoT.

Daniela Oliveira is an Associate Professor at University of
Florida. Her research includes human factors security and
IoT security, especially the application of dynamic informa-
tion flow to thwart attacks.

APPENDIX

17

https://securelist.com/a-flawed-ransomware-encryptor/69481/
https://securelist.com/a-flawed-ransomware-encryptor/69481/
https://news.softpedia.com/news/truecrypter-ransomware-dev-leaves-flaw-in-code-that-lets-victims-decrypt-files-503537.shtml
https://news.softpedia.com/news/truecrypter-ransomware-dev-leaves-flaw-in-code-that-lets-victims-decrypt-files-503537.shtml
https://news.softpedia.com/news/truecrypter-ransomware-dev-leaves-flaw-in-code-that-lets-victims-decrypt-files-503537.shtml
https://threatpost.com/key-flaw-enables-recovery-of-files-encrypted-by-torrentlocker/108210/
https://threatpost.com/key-flaw-enables-recovery-of-files-encrypted-by-torrentlocker/108210/
https://www.welivesecurity.com/2016/04/28/ransomware-is-everywhere-but-even-black-hats-make-mistakes/
https://www.welivesecurity.com/2016/04/28/ransomware-is-everywhere-but-even-black-hats-make-mistakes/
https://www.welivesecurity.com/2016/04/28/ransomware-is-everywhere-but-even-black-hats-make-mistakes/
https://www.symantec.com/products/endpoint


TABLE 11: List of the 113 benign software tested in our evaluation. Software adversely affected by non-intrusive strategies (*) and intrusive
strategies (’) are marked. Software tested under different workloads are bold.

CPU-bound I/O-bound
specrand lbm h264ref libquantum sjeng ’ diff sendxmpp nslookup ’ netstat tcpdump nmap
soplex ’ mcf tar* ’ namd gromacs cksum sendmail ls ss dig ifconfig

omnetpp astar a2ps tail accton spell route ping arp nano pico
lastcomm head dump-acct sort cppi ebizzy lpstat vim * ’ xte ’ echo wget * ’

teseq grep gcal gcal2txt tcal crafty emacs’ mkdir traceroute ’ truncate nice
txt2gcal wdiff moe ’ screen ’ h246ref c-ray cut service df du host

find paxutils shar unshar uuencode hmmer firefox * skype thunderbird * ’ gedit fs-mark ’
enscript ad2c libextractor csv2rec python ’ nero2d cp rm ab chrome libreoffice
recdel tar recinf ruby gcc mrbayes surblhost gurgle gv ctags mkafmmap
javac ’ recfmt cyclictest ’ multichase himeno blogbench barcode iozone ’
dolfyn encode-ogg espeek ffte fhourstones gcrypt

TABLE 12: List of the 100 malware samples used in our evaluation. We named malware with their executable file name.
Malware Category Malware Name Malware Name

Flooders VirusShare 0a6c05d448d41a549bf8949a41a8e4d3 VirusShare 0df5910e6e5f865fddf2d4a4911893fb
Flooders VirusShare 1a39b759416597743a7357634cb29743 VirusShare 1cc96351edd803bdaf849978d3e6c1cf
Flooders VirusShare 1d254d60fc8c588e3ad23ea55e84af1e VirusShare 1d57994e9ee7b308ea5f767dcd04195a
Flooders VirusShare 1da85ad45cb7e66738cdb0e050dca2e2 VirusShare 2b9125e77e18926fe6b99b93f79da92e
Flooders VirusShare 6b174d94b2b20a506cfdd4074be6df05 VirusShare 47e6947dad6821745d9d24e31a894400
Flooders VirusShare 25689d63d0476435e752c9bf61bf2942 VirusShare a3b5646f130a129edef7273606de8952
Flooders VirusShare b8f97d0ba7d21e5b08d98f32ccb97fec VirusShare e1bc6b6911feba3692579c771cc451e4
Flooders VirusShare edf4d6003c9c68774438e4fb25198dab VirusShare ffc7be26912b5aca63e55dc7c830f28a
Flooders VirusShare ff4dbe26278bfda759ee8b1f10d94d3b VirusShare b16de6aa853cab944503825e08cca9b3
Flooders VirusShare b31ae7e6de5da850f91bd4c9c4a47da0 VirusShare b74a48a7555c6ae6a260b0a3ff7e6aa2
Flooders VirusShare b96ee50d33a6b376b67f257718e211f8 VirusShare b367a540ef865acea0fb00d41c91f378
Spyware VirusShare 0a07cf554c1a74ad974416f60916b78d VirusShare 0b283a19a141030be3e8188896d9510b
Spyware VirusShare 0d2dfefb9cfa7d082e9e0d13a28e9722 VirusShare 1dc810f0f0d905046caaad1ea6f79b0e
Spyware VirusShare 00f7adbe9895699b07a114e383787c74 VirusShare 0d057b1b2d81728cb97f5484e9344fc0
Spyware VirusShare 986f442fea7f98579e8a2b4a52f961ab lkl
Spyware logkeys VirusShare fd46acb36263b0155e644941a9e6f03a
Spyware VirusShare fe2df5014dd6f67dc15dffdba25ddd9d VirusShare b5c3730f4c373ea6cd9f8e770b332de6
Spyware VirusShare b7aedd8e6907acde2c2ca72ea18e1ac8 VirusShare b67d0e7a6fdc712aded5bd1a64cfb3e0
Spyware VirusShare b790de9fc2921caa97be21236446d6bf

Trojan VirusShare 0b57ab2f37580a84219dd2faaa9f3444 VirusShare 1b7f7a6af703002c56754c826459e109
Trojan VirusShare 01c5f86372a4f31e72675f8be9b4e6c7 VirusShare 1a6e2a1ebaa423ba2974c3e66f734f2c
Trojan VirusShare 5a16c12e1abe11317465ea4032aa25aa VirusShare 52be89c6e6b108b610dfe2cb67b9fe4e
Trojan VirusShare 753d5e7af271c12e0803956dd8c2b8e6 VirusShare bc3c6f56c85ecd1a7b8bbded84f7e6cd
Trojan Botnet VirusShare e414088f88b329c99aac2ebdfa5aad23
Trojan VirusShare ef112ebf02f0ded52207eed236084cd9 ncrack
Trojan Trojanit httpd
Trojan VirusShare ff4bdef83f191cd6451e26a09311bcd2 VirusShare fda2e5692426454eaf663f7684281955
Trojan VirusShare fdbfffa9bbc918a1b780e54249d3fc99 VirusShare b2cc8e0741d07be0d34b4ea5cdd00f31
Trojan VirusShare b21c7770a6b16c166a1dee6eefcf68a1 VirusShare b24ef5e799b9569377d8705d91bceb38
Trojan VirusShare b62f3df6160145643a2f30d635f2476c VirusShare b77e81d28c2585489e07ccdbec8eb883
Trojan VirusShare b94ab416758569167a54abef295c599b VirusShare b747e8639341958e9c172b6e0c973355

Viruses VirusShare 0a4b022d6865dc32bb246c8b57aadb06 VirusShare 1c41538ccd680edfc0a5e36021fc37e5
Viruses VirusShare 2c45f0f3dc02d8772f875cc5184459ec VirusShare 1a46e25a5c3419f1dbc7b63b59053ab3
Viruses VirusShare 3deec7f4fa618f6a97e7f7af33edb299 VirusShare 8b1ba12a6246829d774ccfdba27db0d6
Viruses VirusShare 8b754b0219aad9bed5da083b9a034352 VirusShare 8b7521ab69a46902087af19455b21e19
Viruses VirusShare 13ee81ea357a97f1d879b91c827a5629 VirusShare 56c7dcc249a715e05e5604d142d6d1e8
Viruses VirusShare 217ece604b4e4a0f766c4ea8aa218519 VirusShare 522a4cdb1f05fdda5f390b31a95f7ae3
Viruses VirusShare 7139ce345ffdacfc92d0cc70e8830320 VirusShare 79927828f9c2e7a015b94c59f4cfe2bb
Viruses VirusShare d19ad58b5807415b2e1cb3a503755c59 dataseg
Viruses VirusShare ed91cd156c154865859deac9e635acb0 VirusShare f0e879988dd417dc02da7d5def6367cf
Viruses VirusShare f11ccc4acb53495a871b278c5efa6b98 VirusShare fbf05500579ac4c597998d3359a76c42
Viruses iamsick manpage
Viruses vlpi VirusShare fd40c417fb687341b8673f6de4e34aef
Viruses VirusShare b50ddaa7162db9817938af18940c81ab
Worms VirusShare 0a477a043a8b3deba999bbbfa1c32f47 VirusShare 0ba3e70816496e5f9d45912f9f15fb76
Worms VirusShare 0cd70e3262a214fd104813826dd612c9 VirusShare 0e4cca1b162c3a9035214058f93a97b4
Worms VirusShare 1d6fa5ed0080a0997f51a86697b8392c VirusShare 3c2bd0548bf8c33566a5bda743441cf0
Worms VirusShare 447bc42013537c5173e575cf0d166937 VirusShare 986f442fea7f98579e8a2b4a52f961ab
Worms VirusShare 20719a9e850c07ac60d548a546ec0a7f VirusShare e8ff4cb488fea8e0ad78e8dc28ae884c
Worms kaiowas10 ssl-crack
Worms VirusShare fe2b2560121db8d08d044bc2d579eac4 VirusShare b4ba07c4d9b781635b33d485b73a614f

18


	Introduction
	Threat Model and Assumptions
	Design and Implementation
	The Perturbation Set
	Perturbation Strategies
	Non-intrusive Perturbation Strategies
	Intrusive Perturbation Strategies

	System Architecture
	Dynamic Perturbation Threshold
	Behavior family A: a signature-based threshold
	Behavior family B: a frequency-based threshold

	Corruption Protection Mechanism

	Evaluation
	Testbed and Data Collection
	Security
	Software Behavior and Performance
	Effects of Uncertainty on Application Execution
	Effects of Uncertainty on Malware

	Chameleon evolves over time
	Effects of Uncertainty on Benign Software


	Discussion
	Defensive Programming
	Trade-off: Performance vs. Mitigation Effect
	Linux vs. Windows
	Chameleon evolves over time

	Related Work
	Conclusion
	References

