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Making logical copies, or clones, of files and directories is critical to many real-world applications and work-

flows, including backups, virtual machines, and containers. An ideal clone implementation meets the follow-

ing performance goals: (1) creating the clone has low latency; (2) reads are fast in all versions (i.e., spatial

locality is always maintained, even after modifications); (3) writes are fast in all versions; (4) the overall sys-

tem is space efficient. Implementing a clone operation that realizes all four properties, which we call a nimble

clone, is a long-standing open problem.

This article describes nimble clones in B-ϵ-tree File System (BetrFS), an open-source, full-path-indexed, and

write-optimized file system. The key observation behind our work is that standard copy-on-write heuristics

can be too coarse to be space efficient, or too fine-grained to preserve locality. On the other hand, a write-

optimized key-value store, such as a Bε -tree or an log-structured merge-tree (LSM)-tree, can decouple the

logical application of updates from the granularity at which data is physically copied. In our write-optimized

clone implementation, data sharing among clones is only broken when a clone has changed enough to warrant

making a copy, a policy we call copy-on-abundant-write.

We demonstrate that the algorithmic work needed to batch and amortize the cost of BetrFS clone operations

does not erode the performance advantages of baseline BetrFS; BetrFS performance even improves in a few

cases. BetrFS cloning is efficient; for example, when using the clone operation for container creation, BetrFS
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outperforms a simple recursive copy by up to two orders-of-magnitude and outperforms file systems that

have specialized Linux Containers (LXC) backends by 3–4×.

CCS Concepts: • Information systems → Key-value stores; Indexed file organization; • Software and

its engineering → File systems management;

Additional Key Words and Phrases: Bε -trees, file system, write optimization, clone
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1 INTRODUCTION

Many real-world workflows rely on logically copying files and directories. Backup and snapshot
utilities logically copy the entire file system on a regular schedule [41]. Virtual-machine servers
create new virtual-machine images by copying a pristine disk image. More recently, container in-
frastructures like Docker make heavy use of logical copies to package and deploy applications [39,
40, 42, 49], and new container creation typically begins by making a logical copy of a reference
directory tree.

Duplicating large objects is so prevalent that many file systems support logical copies of di-
rectory trees without making full physical copies. Physically copying a large file or directory is
expensive—both in time and space. A classic optimization, frequently used for volume snapshots,
is to implement copy-on-write (CoW). Many logical volume managers support block-level CoW
snapshots [29], and some file systems support CoW file or directory copies [34] via cp --reflink
or other implementation-specific interfaces. Marking a directory as CoW is quick, especially when
the file system can mark the top-level directory as CoW and lazily propagate the changes down
the directory tree. Initially, this approach is also space efficient because blocks or files need not
be rewritten until they are modified. However, standard CoW presents a tradeoff between write
amplification and locality.

The main CoW knob to tune is the copy granularity. If the copy granularity is large, such as
in file-level CoW, the cost of small changes is amplified; the first write to any CoW unit is high,
drastically increasing update latency, and space is wasted because sharing is broken for all data. If
the copy granularity is small, updates are fast but fragmented; sequentially reading the copy be-
comes expensive. Locality is crucial: poor locality can impose a persistent tax on the performance
of all file accesses and directory traversals until the file is completely rewritten or the system
defragmented [3, 12, 13, 15].

Figure 1 shows that ZFS can exhibit a tradeoff between write amplification and read locality, as
measured in grep time as the granularity changes. In this experiment, a single 256 MiB file is writ-
ten sequentially to an empty ZFS datastore and then cloned. Next, 8,192 16B writes are performed
at random 4KiB-aligned offsets within the cloned file. Finally, the cloned file is sequentially read.
Write amplification is calculated as the ratio of the growth in the file system’s physical space to
the logical size of the write requests (actual data written/requested data written).

Write amplification increases with block size because each 16B write will induce a new block
to be copied upon the write. Conversely, each copied block that is read induces a non-contiguous
IO to read a copied block—i.e., a seek on an HDD, or more, smaller IOs on an SSD, both of which
yield suboptimal performance. Smaller block sizes induce more random reads, whereas larger block
sizes spread the costs of reads over fewer, larger I/Os. Thus, grep time decreases with larger blocks,
which we see in the figure. Section 5 further details this read/write tradeoff.
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Fig. 1. The space/locality tradeoff as a function of CoW granularities in ZFS (i.e., ZFS block size). Lower is

better on both axes. This figure shows the write amplification of making small modifications to a large file.

Write amplification is calculated as the ratio of the growth in the file system’s physical space to the logical

size of the write requests (actual data written/requested data written). Fragmentation is measured by the

time to perform a grep, since more contiguous data reduces grep time. When shared data is modified, larger

CoW granularities better preserve locality but require more data to be copied; smaller block sizes improve

data sharing, but result in more fragmentation.

Nimble clones. An ideal logical copy—or clone—implementation will have strong performance
along several dimensions. In particular, clones should:

—be fast to create;
—have excellent read locality, so that logically related files can be read at near disk bandwidth,

even after modification;
—have fast writes, both to the original and the clone; and
—conserve space, in that the write amplification and disk footprint are as small as possible,

even after updates to the original or to the clone.

We call a clone with this constellation of features nimble. Existing CoW clone implementations
are not nimble.

Figure 2 illustrates how performance can degrade using standard CoW techniques in two file
systems with copy optimizations. We start by creating a two-level directory hierarchy with 64
4-MiB files (256MiB total), and the experiment proceeds for several rounds. Each round does a
volume snapshot or a reflink copy (depending on what the file system supports) and then performs
a small, 16-byte edit to each file. We report the time to do a recursive, cold-cache grep over the
entire directory at the end of each round. The experiment is detailed further in Section 5.2.

After each copy and modification, read performance degrades. In the case of XFS and ZFS, we
see a factor of 3–4× after only 16 rounds. Btrfs degrades more gradually, about 50% over the same
period. In both cases, however, the degradation appears monotonic.

The critical issue here is the need to decouple the granularity of writes to a clone from the
granularity of copies of the shared data. It makes perfect sense to copy a large file that is effectively
overwritten. But, for very small changes, it is more IO efficient to keep a “delta” in scratch space
until enough changes accrue to justify the cost of a substantial rewrite. In other words, the CoW
copy size should be tuned to preserve locality (e.g., set to an efficient transfer size for the device),
not to whatever granularity a single workload happens to use.
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Fig. 2. Grep Time for a logically copied 256MiB directory, as a function of the number of prior copies with

small edits. (Lower is better.) Btrfs-svol is a volume snapshot, Btrfs and XFS use cp --reflink. Full experi-

ment details are in Section 5.2.

Contributions. In this article, we present a logical copy specification, which we call a clone, and a
set of performance criteria that a nimble clone must satisfy. We present the design for a file system
and nimble clone implementation that meets all of these criteria.

One key insight into our solution is that the write-optimized message-batching model used in
systems such as BetrFS is well suited to decouple writes from copies. There is already a mecha-
nism in place to buffer and apply small changes, although implementing the semantics of cloning
requires substantial, additional data-structural work.

We extend BetrFS 0.4, an open-source, full-path-indexed, write-optimized file system. BetrFS
performance matches or exceeds other local Linux file systems on a range of applications [12, 22,
44, 47], but BetrFS 0.4 does not support cloning. BetrFS 0.5’s clone implements a policy we call
Copy-on-Abundant-Write, or CAW, by buffering small changes to a cloned file or directory in
messages until enough changes accrue to warrant the cost of unsharing the cloned data.

This article also contributes several data-structural techniques to write-optimized dictionaries,
in order to implement nimble clones in BetrFS. First, we enable different traversal paths to re-use
the same physical data by transforming BetrFS’s Bε -tree [6, 10, 18] data structure into a directed
acyclic graph (Bε -DAG). Second, in order to realize very fast logical copies, we develop new tech-
niques that apply write-optimization, which has previously been used to accelerate changes to
data stored in the key-value store, toward batching changes to the topology of the data structure
itself, i.e., its pivots and internal pointers. An essential limitation of the state-of-the-art, including
BetrFS, is that renames, which modify the tree structure, cannot be batched; rather, renames must
be completed immediately, including applying all pending changes to the relevant portions of the
file system namespace. We introduce a GOTO message, which can rapidly persist a logical copy into
the message buffer, and is as fast as any small write. With GOTOs, Bε -DAG-internal housekeeping
work is piggy-backed onto any writes to the logically copied region. Third, we introduce a trans-

lation prefix abstraction that can—at rest—logically correct stale keys in shared data, facilitating
both deferred copies and correct queries of partially shared data. As a result of these techniques,
BetrFS can rapidly persist large logical copies much faster than the current state-of-the-art (33%–
6.8×), without eroding read, write, or space efficiency.
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The contributions of this article are as follows:

—A design and implementation of a Bε -DAG data structure, which supports nimble CAW
clones. The Bε -DAG extends the Bε -tree buffered-message substrate to store and logically
apply small changes to a clone, until enough changes accrue to warrant the cost of rewriting
a clone.

—A write-optimized clone design, wherein one can persist a clone by simply writing a mes-
sage into the root of the DAG. The work of the clone is batched with other operations and
amortized across other modifications.

—An asymptotic analysis, indicating that adding cloning does not harm other operations, and
that cloning itself has a cost that is logarithmic in the size of the Bε -DAG.

—A thorough evaluation of BetrFS, which demonstrates that it meets the nimble performance
goals, does not erode the advantages of baseline BetrFS on unrelated workloads, and can
improve performance of real-world applications. For instance, we wrote a Linux Container
(LXC) backend that uses cloning to create containers, and BetrFS is 3–4× faster than other
file systems with cloning support, and up to two orders of magnitude faster than those
without.

2 BETRFS BACKGROUND

This section presents Bε -tree and BetrFS background that is necessary to understand the cloning
implementation presented in the rest of the article.

BetrFS [22, 23, 44, 45, 47, 48] is an in-kernel, local file system built on a key-value store (KV-
store) substrate. A BetrFS instance keeps two KV-stores. The metadata KV-store maps full paths
(relative to the mountpoint, e.g., /foo/bar/baz) to struct stat structures, and the data KV-store
maps {full path + block number} keys to 4KiB blocks.

The Bε -tree. BetrFS is named for its KV-store data structure, the Bε -tree [6, 10]. A Bε -tree is
a write-optimized KV-store in the same family of data structures as an LSM-tree [30], Cache-
Oblivious Lookahead Array (COLA) [5] or other or other write-optimized dictionaries (WOD) [2,
4, 7, 14]. Like B-tree variants, Bε -trees store key-value pairs in leaves. A key feature of the Bε -tree is
that interior nodes buffer pending mutations to the leaf contents, encoded as messages. Messages
are inserted into the root of the tree, and, when an interior node’s buffer fills with messages,
messages are flushed in large batches to one or more children’s buffers. Eventually, messages reach
the leaves and the updates are applied. As a consequence, random updates are inexpensive—the
Bε -tree effectively logs updates at each node. And since updates move down the tree in batches,
the IO savings grow with the batch size.

A key Bε -tree invariant is that all pending messages for a given key-value pair are located on
the root-to-leaf traversal path that is defined by its key. So a point query needs to read and apply
all applicable buffered messages on the traversal path to construct a correct response. Messages
have a logical timestamp, and one can think of the contents of these buffered messages as a history
of mutations since the last time the leaf was written.

Range operations. BetrFS includes optimizations for contiguous ranges of keys. These are de-
signed to optimize operations on subtrees of the file system namespace (e.g., mv).

Importantly, because BetrFS uses full-path keys, the contents of a directory are encoded using
keys that have a common prefix and, thus, are stored nearly contiguously in the Bε -tree, in roughly
depth-first order. One can read a file or recursively search a directory with a range query over all
keys that start with the common directory or file prefix. As a result, BetrFS can use a range delete

message to delete an entire file or recursively (and logically) delete a directory tree with a single
message. The range delete is lazily applied to physically delete and recover the space.
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Full-path indexing and renaming. Efficient rename operations pose a significant challenge for
full-path-indexed file systems. BetrFS has a range rename operation, which can synchronously

change the prefix of a contiguous range of keys in the Bε -tree [47]. In a nutshell, this approach
slices out the source and destination subtrees, such that there is a single pointer at the same Bε -tree
level to the source and destination subtrees. The range rename then does a “pointer swing,” and
the tree is “healed” in the background to ensure balance and that nodes are within the expected
branching factor. Some important performance intuition about this approach is that the slicing
work is logarithmic in the size of the renamed data (i.e., the slicing work is only needed on the
right and left edge of each subtree).

BetrFS ensures that range rename leaves most of the on-disk subtree untouched by lifting out
common key prefixes. Consider a subtree T whose range is defined at T ’s parent by pivots p1 and
p2. Then, the longest common prefix of p1 and p2, denoted lcp(p1,p2), must be a prefix of all the
keys in T . A lifted Bε -tree omits lcp(p1,p2) from all keys in T . We say that lcp(p1,p2) has been
lifted out of T , and that lcp-T is lifted. The lifted Bε -tree maintains the lifting invariant, i.e., that
every subtree is lifted at all times. Maintaining the lifting invariant does not increase the IO cost
of insertions, queries, flushes, node splits or merges, or any other Bε -tree operations.

With the combination of tree surgery and lifting, BetrFS renames are competitive with inode-
based file systems [47].

Crash consistency. BetrFS’s Bε -tree nodes are CoW. Nodes are identified using a logical node
number, and a node translation table maps logical node numbers to on-disk locations. The node
translation table also maintains a bitmap of free and allocated disk space. Node writeback involves
allocating a new physical location on disk and updating the node translation table. This approach
removes the need to modify a parent when a child is rewritten.

All Bε -tree modifications are logged in a logical redo log. The Bε -tree is checkpointed to disk
every 60 seconds; a checkpoint writes all dirty nodes and the node translation table to disk and then
truncates the redo log. After a crash, one need only replay the redo log since the last checkpoint.

Physical space is reclaimed as part of the checkpointing process with the invariant that one
can only reuse space that is not reachable from the last stable checkpoint (otherwise, one might
not recover from a crash that happens before the next checkpoint). As a result, node reclamation
is relatively straightforward: when a node is overwritten, the node translation table tracks the
pending free, and then applies that free at the next checkpoint. We note that range delete of a
subtree must identify all of the nodes in the subtree and mark them free as part of flushing the
range delete message; the node translation table does not store the tree structure.

3 CLONING IN BETRFS 0.5

This section describes how we augment BetrFS to support cloning.

3.1 Overview of the Clone Operation

We introduce a file system primitive operation, which we call clone. The clone operation can be
used to perform a logical copy of a single file or a directory subtree.

Defining Clone semantics. A clone operation takes as input two paths: (1) a source path—either
a file or directory tree root—and (2) a destination path. The file system directory tree is changed
to create a logically identical copy of the source object at the location specified by the destination
path. If a file or directory is present at the destination before the clone, that file or directory is
unlinked from the directory tree. The clone operation is atomic in our prototype.

Uses of Clone. The clone operation semantics are powerful enough to implement a wide range
of namespace operations. Some use cases for clone involve copying in immediate ways: snapshots,
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creating Virtual machine images, or instantiating container storage from a reference directory tree.
In other use cases, the copy is less evident. For example, because the clone operation overwrites the
destination, delete can be implemented by cloning null to the target object, overwriting whatever
is there. Similarly, to rename an object a to location b, you could clone a to b, then clone null
to a. In a path-based file system, directory renames are traditionally difficult [22]. In contrast, a
directory rename is immediate using the clone operation.

In short, the clone operation is a semantically simple building block for a wide range of common
operations that involve logically copying large amounts of data.

Based on clone semantics, we describe how to extend the lifted Bε -tree data structure to a lifted
Bε -DAG, and finally describe how to perform mutations on this new data structure. The section
concludes with a brief asymptotic analysis of the Bε -DAG.

When considering the design, it helps to differentiate the three layers of the system: the file
system directory hierarchy, the KV-store keyspace, and the internal Bε -tree structure. We first de-
fine the clone operation semantics in terms of their effect on file system directory tree. However,
because all file system directories and their descendants are mapped onto contiguous KV-store
keys based on their full paths, we then focus the BetrFS clone discussion on the KV-store keyspace
and the internal Bε -tree structure implementation. The difference of abstraction layers is also il-
lustrated in Figure 3.

In the KV-store keyspace, clone (s,d ) copies all keys with prefix s to new keys with prefix s
replaced with prefix d . It also removes any prior key-value pairs with prefix d . For example, after
executing clone (/a/b, /z/), the contents of the subtree rooted at directory /a/b are logically
copied to a subtree rooted at /z/, overwriting any prexisting files or directories with the prefix /z/.

For the rest of the session, we introduce smart pivots and GOTO messages. Smart pivots function
similarly to regular pivots; however, in addition to specifying the child corresponding to a given
key range, they also translate the keys via a prefix change. In Bε -trees, we use a message with a
similar functionality, which we refer to as a GOTO message. A GOTO message is a range message that
redirects subsequent messages and operations to a different node while simultaneously providing a
prefix translation. Like a smart pivot, a GOTO message points to the LCA of the source of the cloned
data, and when the message is flushed to the level just above the LCA, it turns into a smart pivot.
An example of clone (/a/b, /z/) in Figure 3 shows the overall work flow of clone operation in
BetrFS 0.5.

3.2 Lifted Bε -DAGs

Our goal in making a lifted Bε -DAG is to share, along multiple graph traversal paths, a large
amount of cloned data, and to do so without immediately rewriting any child nodes. Intuitively, we
should be able to immediately add one edge to the graph, and then tolerate and lazily repair any
inconsistencies that appear in traversals across that newly added edge. As illustrated in Figure 4,
we construct the lifted Bε -DAG by extending the lifted Bε -tree in three ways.

First, we maintain reference counts for every node so that nodes can be shared among multiple
Bε -DAG search paths. Reference counts are decoupled from the node itself and stored in the node
translation table. Thus, updating a node’s reference does not require modifying any node. When-
ever a node’s reference count reaches zero, we decrement all of its children’s reference counts, and
then we reclaim the node. Section 4 describes node reclamation.

A significant challenge for sharing nodes in a Bε -tree or Bε -DAG is that nodes are large (tar-
get node sizes are large enough to yield efficient transfers with respect to the underlying device,
typically 2–4MiB) and packed with many key-value pairs, so a given node may contain key-value
pairs that belong to unrelated logical objects. Thus, sharing a Bε -DAG node may share more than
just the target data.
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Fig. 3. The state of a Bε -DAG before and after a Clone (/a/b, /z), which logically copies the keys and values

with prefix /a/b, replacing the prefix with /z. This is implemented as a DAG, by adding a translation prefix

(x) and filter (f), or xf function, to a child pointer in the DAG. The xf function ignores any key-value pairs

in the node that do not match the source prefix (in this case, /a/b).

For example, in Figure 4, the lower node is the common ancestor of all keys beginning with
s , but the subtree rooted at the node also contains keys from q to v . We would like to be able to
clone, say, s to p by simply inserting a new edge, with pivots p and pz, pointing to the common
ancestor of all s keys but, as the example illustrates, this could have the side effect of cloning some
additional keys as well.

Thus, our second major change is to alter the behavior of pivot keys so that they can exclude
undesirable keys from traversals. This filtering lets us tolerate unrelated data in a subgraph. A
baseline Bε -tree has an invariant that two pivot keys in a parent node must bound all key-value
pairs in their child node (and sub-tree). In the Bε -DAG, we must relax this invariant to permit
node sharing, and we change the graph traversal behavior to simply ignore any key-value pair,
message, or pivot that lies outside of the parent pivot keys’ range. This partially addresses the issue
of sharing a subgraph with extraneous data at its fringe.

The third related change is to augment each edge with an optional translation prefix that
alters the behavior of traversals that cross the edge. When cloning a source range of keys to a
destination, part of the source key may not be lifted. A translation prefix on an edge specifies any
remaining part of the source prefix that was not lifted at the time of cloning. As Figure 4 shows,
whenever a query crosses an edge with translation prefix s , we prepend s to the query term before
continuing to the child, so that the appropriate key-value pairs are found. Once completed, a query
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Fig. 4. Query processing example in a lifted Bε -DAG. Initially, the query pw arrives at the parent node. Since

the target child’s pointer is bracketed by pivots that share the common prefix p (pivots p and pw bracket the

pointer to the child), the lifted Bε -DAG lifts (i.e., removes) the common prefix p from the query term used

for searching in the child, transforming the query from pw to w . Next, the query w reaches an edge with

translation prefix s . The lifted Bε -DAG prepends the translation prefix s to the query before continuing to

the child. Thus, the query that finally arrives at the child is sw : the common prefix p was lifted out, and the

translation prefix s was prepended. The query process proceeds recursively until a terminal node is reached.

Fig. 5. Creating a clone by inserting a GOTO message. Note that the GOTO message’s bracketing pivots are (p,

pz), and its child pointer contains translation prefix s . The GOTO message supersedes the node’s other pivots

during a traversal.

removes the translation prefix from any results, before the lifted destination key along the search
path is added back. In the common case, the translation prefix will be NULL.

With these changes—reference counting, filtering pivots, and translation prefixes—a Bε -DAG
can efficiently represent clones and share cloned data among different search paths.

3.3 Creating Clones with GOTO Messages

To clone all keys (and associated data) with prefix s to new keys with prefix p, we first find the
lowest-common ancestor (LCA) of all s keys in the Bε -DAG, as shown in Figure 5. Intuitively, the
LCA is the root of the lowest sub-graph that includes all source keys. We will call the LCA of all s

ACM Transactions on Storage, Vol. 17, No. 1, Article 5. Publication date: January 2021.



5:10 Y. Zhan et al.

keys node Ls . We then flush to Ls any pending messages for s keys, so that all information about
s keys can be found within the sub-DAG rooted at node Ls . We also insert into the root’s buffer
a GOTO message (described below) for all p keys with target node Ls . We finally increment the
reference count of Ls . This completes the cloning process.

GOTO messages. A GOTO message behaves like a pair of bracketing pivots and an associated child
pointer. Each GOTO message specifies a range of keys, (a,b); a target height; and a node,U . When-
ever a query for some key x reaches a node with a GOTO message, if x falls in the range (a,b),
then the query continues directly to node U ; said differently, a node’s GOTO message supersedes
the node’s other pivots during a traversal. Like regular pivots, if the two pivots in a GOTO message
share a common prefix; then that prefix is removed (lifted) from the query before continuing. Fur-
thermore, like regular child pointers, the pointer in a GOTO message can specify a translation prefix
that gets prepended to queries before they continue. Figure 5 illustrates a simple GOTO example,
where s is cloned to p. There is a normal child pointer associated with node pivots that bracket
prefix s , as well as a GOTO message that redirects queries for p to the LCA of s . In this example, we
assume s has not been lifted from the LCA, and, thus, s is used as a translation prefix on the GOTO
message.

Flushing GOTO messages. Unlike a regular pair of pivots that bracket a child pointer, a GOTO
message can be flushed from one node to another, just like any other message. Encoding DAG
structure inside a message is an incredibly powerful feature: we can quickly persist a logical clone
and later batch any post-cloning clean-up work with subsequent writes. When subsequent traver-
sals process buffered messages in logical order, a GOTO takes precedence over all older messages
pertaining to the destination keys; in other words, a GOTO implicitly deletes all key-value pairs for
the destination range, and redirects subsequent queries to the source sub-graph.

For performance, we ensure that all root-to-leaf Bε -DAG paths have the same length. Maintain-
ing this invariant is important because, together with the Bε -DAG’s fanout bounds, it guarantees
that the maximum Bε -DAG path has logarithmic length, which means that all queries have loga-
rithmic IO complexity. Thus, we must ensure that paths created by GOTO messages are not longer
than “normal” root-to-leaf paths.

This length invariant constrains the minimum height of a GOTO message to be one level above
the message’s target node, U . At the time we flush to the LCA and create the GOTO message, we
know the height ofU ; as long as the GOTO message is not flushed to the same level asU (or deeper),
the maximum query path will not be lengthened.

So, for example, if the root node in Figure 5 is at height 7 and the LCA of s is at height 3, then
the GOTO message will get lazily flushed down the tree until it resides in the buffer of some node at
height 4. At that point the GOTO will be converted to a regular bracketing pair of node pivots and
a child pointer, as shown in Figure 6.

In flushing a GOTO above the target height, the only additional work is possibly deleting obviated
internal nodes. In the simple case, where a GOTO covers the same key range as one child, flushing
simply moves the message down the DAG one level, possibly lifting some of the destination key.
One may also delete messages obviated by the GOTO as part of flushing. The more difficult case
is when a GOTO message covers more than one child pointer in a node. In this case, we retain
only the leftmost and rightmost nodes. We flush the GOTO to the leftmost child and adjust the
pivot keys to include both the left “fringe” and the GOTO message’s key range. We similarly adjust
the rightmost pivot’s keys to exclude any keys covered by the GOTO message (logically deleting
these keys, but deferring clean-up). Any additional child pointers and pivots between the left and
rightmost children covered by the GOTO are removed, and the reference counts on those nodes are
reduced by one, effectively deleting those paths.
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Fig. 6. Converting a GOTO message (left) into a pair of bracketing pivots and a child pointer (right). Note that

the GOTO message’s pivots pab and t completely cover the range specified by the pre-existing node pivots pz
and r , so the GOTO’s pivots replace those pivots in the new node (right). Additionally, the translation prefix

s2 is changed to as2. This is because, in the original node (left), the prefix p is lifted by pivots pa and pz, but

in the new node (right), new prefix pa is lifted by pivots pa and pab; a must therefore be prepended to the

translation prefix in order to maintain traversal equivalence. (Not shown: the reference counts of covered

children are dropped.)

Converting a GOTOmessage into node pivots and a child pointer is conceptually similar to flushing
a GOTO. As with flushing, a GOTO message takes precedence over any older messages or pre-existing
node pivots and child pointers that it overlaps. This means that any messages for a child that are
obviated by the GOTO may be dropped before the GOTO is applied.

The simplest case is where a single child is exactly covered by the GOTO; here, we just replace
the pointer and decrement the original child’s reference count. For example, in Figure 6, the GOTO
message’s range (pab, t ) completely covers the old pivot range (pz, r ). Thus, when converting the
GOTO message into regular pivots, we drop the node pointer with translation prefix s3, and we
decrement the reference count of the node to which it pointed.

Partial overlap with a pivot range is handled by a combination of adjusting pivots and adding
new pointers. In Figure 6, the GOTO message partially overlaps the old pivot ranges (pa,pz) and
(r ,w ), and there is live data on the “left” fringe of this child (keys between pa and pab are not cov-
ered by this GOTO). We modify the original pivot keys so that subsequent traversals through their
child pointers only consider live data, but we leave the child nodes untouched and defer physically
deleting their data and relifting their keys. Note that in this example, the subtree between updated
pivots pa and pb should lift pa instead of just p, so we add a to the translation prefix until the next
time this child is actually flushed and re-lifted. We finally replace the covered pivots with new
pivot keys and a child pointer for the GOTO’s target (the pointer between pab and t in the right
portion Figure 6). In the case where a GOTO message overlaps a single child with live data on the
left and right fringe (not illustrated), we would create a third pointer back to the original child and
increment its reference count accordingly, with appropriate translation prefixes and pivots to only
access the live data on the “right” side.

Finally, as with flushing a GOTO, if a GOTO covers multiple children, we remove all of the refer-
ences to the “interior” children, and replace them with a single child pointer to the GOTO target.
We note that this can temporarily violate our target fanout; we allow the splitting and merging
process, described next, to restore the target fanout in the background.

3.4 Flushes, Splits, and Merges

We now explain how node flushes, splits, and merges interact with reference counting, node shar-
ing, translation prefixes, and GOTO messages.

At a high level, we break flushing, splitting, and merging into two steps: (1) convert all involved
children into simple children (defined below), then (2) apply the standard lifted Bε -tree flushing,
splitting, or merging algorithm.
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Fig. 7. Creating a private copy of a shared child. The original node’s contents are copied, and its reference

count is decremented. Since the private copy points to all of the original node’s children, those children have

their reference count increased by one. (Pivot keys are omitted for clarity; they remain unchanged.)

A child is simple if it has reference count 1 and the edge pointing to the child has no translation
prefix. When a child is simple, the Bε -DAG locally looks like a lifted Bε -tree, so we can use the lifted
Bε -tree flushing, splitting, and merging algorithms, since they all make only local modifications to
the tree.

The Bε -DAG has an invariant that one may only flush into a simple child. Thus, one of two
conditions that will cause a node to be made simple is the accumulation of enough messages in
the parent of a node—i.e., a copy-on-abundant-write. The second condition that can cause a node
to become simple is the need to split or merge the node by the background, healing thread; this
can be triggered by healing a node that has temporarily violated the target fanout, or any other
condition in the baseline Bε -tree that would cause a split or merge.

We present the process for converting a child into a simple child as a separate step for clarity
only. In our implementation, the work of making a child simple is integrated with the flushing,
splitting, and merging algorithms. Furthermore, all the transformations described are performed
on in-memory copies of the node, and the nodes are written out to disk only once the process is
completed. Thus, simplifying children does not change the IO costs of flushes, splits, or merges.

The first step in simplifying a child is to make a private copy of the child, as shown in Figure 7.
When we make a private copy of the child, we have to increment the reference counts of all of the
child’s children.

Once we have a private copy of the child, we can discard any data in the child that is not live, as
shown in the first two diagrams of Figure 8. For example, if the edge to the child has translation
prefix s1, then all queries that reach the child will have s1 as a prefix, so we can discard any messages
in the child that don’t have this prefix, because no query can ever see them. Similarly, we can drop
any children of the child that are outside of the range of s1 keys, and we can update pivots to be
entirely in the range of s1 keys. When we adjust pivots in the child, we may have to adjust some of
the child’s outgoing translation prefixes, similar to when we converted GOTO messages to regular
pivots.

Finally, we can relift the child to “cancel out” the translation prefix on the edge pointing to the
child and all the s1 prefixes inside the child. Concretely, we can delete the s1 translation prefix on
the child’s incoming edge and delete the s1 prefix on all keys in the child.

A consequence of this restriction is that translation prefixes should always be NULL after a flush.
Intuitively, one only needs a translation prefix to compensate for the effect on lifting of logically
deleted data still in a node; after a flush, this data is physically deleted and the node is re-lifted,
obviating the need for a translation prefix.
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Fig. 8. Eliminating a child’s translation prefix. The original child node (left) is a private copy with reference

count one. First, nodes with unreachable keys are deleted and reclaimed (center). Then, the translation prefix

s1 is removed from the incident edge and logically applied to all pivot keys and all keys in buffered messages

(right).

As described, these steps slightly modify the amortized and background work to “heal” irregu-
larities in the Bε -DAG. This work is primarily driven by subsequent writes to the affected range;
a shared node that is not modified on any path can remain shared indefinitely. In our current pro-
totype, we do track shared nodes with very little live data, and mark them for flushing either in
the background or under space pressure to reclaim space. The key feature of this design is the
flexibility to rewrite nodes only when it is to the advantage of the system—either to reclaim space
or recover locality for future queries.

3.5 Putting It All Together

The remaining lifted Bε -tree operations are unchanged in a Bε -DAG. Inserts, deletes, and clones
just add messages to the root node’s buffer. When an internal node’s buffer becomes full, we flush
to one of its children (after making the child simple, if necessary). When a leaf becomes too large
or too small, we split or merge it (after making the leaf simple). When an internal node has too
many or too few children, we split or merge it (again after making it simple).

3.6 Asymptotic Analysis

This section shows that adding cloning does not affect the asymptotics of other operations, and
that the cost of a clone is logarithmic in the size of the tree.

Insert, query, and clone complexity all depend on the Bε -DAG height, which is bounded by the
height of a lifted Bε -tree with the same logical state. To see why, consider the following straight-
forward transformation of a Bε -DAG to a Bε -tree: first flush all GOTO messages until they become
regular pivots, then break the CoW sharing of all nodes. Since this conversion can only increase
the height of the data structure, a logically equivalent lifted Bε -tree is at least as tall as a Bε -DAG.

The height of a Bε -tree is O (log
B
N ), where N is the total number of items that have been

inserted into the tree. Hence, the height of a Bε -DAG isO (log
B
N ), where N is the number of keys

that have been created, either through insertion or cloning, in the Bε -DAG.

Queries. Since the height of the Bε -DAG isO (log
B
N ), the IO cost of a query is alwaysO (log

B
N ).

Insertions. The Bε -DAG insertion IO cost is the same as in a Bε -tree, i.e.,O (
log

B
N

B1−ϵ ). This is because
the IO cost of an insertion is h × c/b, where h is the height of the Bε -DAG, c is the IO cost of
performing a flush, and b is the minimum number of items moved to the child during a flush.
Flushes costO (1) IOs in a Bε -DAG, just as in a Bε -tree, and flushes move at least Ω(B/B1−ϵ ) items,
since the buffer in each node has size Ω(B), and the fanout of each node is O (Bϵ ).
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Clones. The cost to create a clone can be broken into the online cost, i.e., the costs of all tasks
that must be completed before the clone is logically in place, and the offline costs, i.e., the addi-
tional work that is performed in the background as the GOTO message is flushed down the tree and
eventually converted to regular pivots.

The online cost of cloning s to d is merely the cost to push all s messages to s’s LCA and insert
the GOTO message. The cost of pushing all the messages to the LCA isO (log

B
N ) IOs. Inserting the

new GOTO message costs less than 1 IO, so the total cost of creating a clone is O (log
B
N ) IOs.

The background cost is incurred by the background thread that converts all edges with a trans-
lation prefix into simple edges. We bound the IO cost of this work as follows. A clone from s to d
can result in edges with translation prefixes only along four root-to-leaf paths in the Bε -DAG: the
left and right fringes of the sub-dag of all s keys, and the left and right fringes of the sub-dag of
all d keys. Thus the total IO cost of the background work is O (log

B
N ).

4 IMPLEMENTATION AND OPTIMIZATIONS

In this section, we describe two optimizations that reduce the total cost of clones. Although they
do not alter the asymptotics, we leverage the file system namespace and BetrFS design to save both
background and foreground IO.

Preferential splitting. Most background cloning work involves removing unrelated keys and
unlifted prefix data from fringe nodes, i.e., nodes that contain both cloned and non-cloned data.
Thus, we could save work by reducing the number of fringe nodes.

Baseline BetrFS picks the middle key when it splits a leaf node. With preferential splitting, we
select the key that maximizes the common prefix of the leaf, subject to the constraint that both
new leaves should be at least 1/4 full. Since data in the same file share the same prefix (as do files in
the same directory), preferential splitting reduces the likelihood of having fringe nodes in a clone.

A naïve approach would compare the central half of all leaf keys and pick the two adjacent keys
with the shortest common prefix. However, this scan can be costly. We can implement preferential
splitting and only read two keys: because the shortest common prefix among adjacent keys is the
same as the common prefix of the smallest and the largest candidate keys (the keys at 1/4 and 3/4
of the leaf), we can construct a good parent pivot from these two keys.

Node reclamation. We run a thread in the background that reclaims any node whose reference
count reaches 0. As part of the node reclamation process, we decrement each child node’s reference
count, including nodes pointed to by GOTO messages. Node reclamation proceeds recursively on
children whose reference counts reach zero, as well.

This thread also checks any node with a translation prefix. In an extreme case, a node with no
reachable data may have a positive reference count due to translation prefixes. For example, if the
only incident edge to a sub-DAG has translation prefix s , but no key in the entire sub-DAG has s
as a prefix, then all data in the sub-DAG is reclaimable. As part of space reclamation, BetrFS finds
and reclaims nodes with no live data, or possibly unshares and merges nodes with relatively little
live data.

Concurrency. B-tree concurrency is a classic problem, since queries and inserts proceed down the
tree, but splits and merges proceed up the tree, making hand-over-hand locking tricky. Bε -trees
have similar issues, since they also perform node splits and merges, and many of the B-tree-based
solutions, such as preemptive splitting and merging [33] or sibling links [25], apply to Bε -trees, as
well.

We note here that our cloning mechanism is entirely top-down. Messages get pushed down
to the LCA, GOTO messages get flushed down the tree, and non-simple edges get converted
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to simple edges in a top-to-bottom manner. Thus, cloning imposes no new concurrency issues
within the tree.

Background cleaning. BetrFS includes a background process that flushes messages for frequently
queried items down the tree. The intention of this optimization is to improve range and point query
performance on frequently queried data: once messages are applied to key-value pairs in Bε -tree
leaves, future queries need not reprocess those messages.

We found that, in the presence of clones, this background task increased BetrFS 0.5’s space
consumption because, by flushing small changes, the cleaner would break Bε -DAG nodes’ copy-
on-write sharing.

Thus, we modified the cleaner to never flush messages into any node with a reference count
greater than 1; such messages instead wait to be flushed in normal write-optimized batches once
enough work has accrued to warrant rewriting the node.

5 EVALUATION

In this section, we present evaluations of BetrFS 0.5 and comparisons with other file systems.
The evaluation centers around the following questions:

—Do BetrFS 0.5 clones meet the performance goals of simultaneously achieving (1) low la-
tency clone creation, (2) reads with good spatial locality, even after modifications, (3) fast
writes, and (4) space efficiency? And, to what degree is each approach to cloning sensitive
to the pattern of cloning and subsequent mutations? (Section 5.1, Section 5.2)

—Does the introduction of cloning harm the performance of unrelated operations? (Sec-
tion 5.3)

—How can cloning improve the performance of a real-world application? (Section 5.4)

All experimental results were collected on a Dell Optiplex 790 with a 4-core 3.40 GHz Intel Core
i7 CPU, 4GiB RAM, and a 500GB, 7200 RPM SATA disk, with a 4096-byte block size. We boot from
a USB flash drive with the root file system, isolating the workload file system. The system runs
64-bit Ubuntu 14.04.5.

We compare BetrFS 0.5 to baseline BetrFS, ext4, Btrfs, XFS, ZFS, and NILFS2. We used BetrFS
version 0.4 from github.com/oscarlab/betrfs, ZFS 0.6.5.11 from zfsonlinux.org, and kernel default
versions of the other file systems. Unless noted, each experiment was run a minimum of five times.
We present the mean and display bars that indicate the minimum and maximum times over all
runs. Similarly, ± terms bound the minimum and maximum values over all runs. Unless noted, all
benchmarks are cold-cache tests.

We compare BetrFS 0.5’s directory-level clone to three Linux file systems that either support
volume snapshots (Btrfs and ZFS) or reflink copies of files (Btrfs and XFS). We compare Btrfs in
both modes; the label Btrfs-svol is in volume-snapshot mode.

BetrFS only works on a modified 3.11.10 kernel, so we run BetrFS on that kernel; all other file
systems are evaluated using kernel version 4.9.142. We note that, for all non-BetrFS file systems,
we ran experiments using both kernel versions. Since performance was generally better on the
newer kernel, we present the numbers for the newer kernel.

5.1 Revisiting the Space/Locality Tradeoff

We begin by revisiting the experiment in Figure 1, which illustrates the space/locality tradeoff
associated with ZFS block size (the CoW granularity). Figure 9 supplements that figure with data
for all file systems. Recall that in this microbenchmark, we create a single 256MiB file and clone
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Fig. 9. This figure revisits Figure 1 and adds space/locality tradeoff data for btrfs-reflink, betrfs-svol, xfs,

and BetrFS 0.5. As before, lower is better on both axes. This figure shows the space amplification of making

small modifications to a large cloned file. Space amplification is calculated as the ratio of the growth in the

file system’s physical space to the logical size of the write requests (physical space consumed/requested

data written). Fragmentation is measured by the time to perform a grep, since more data contiguity reduces

grep time. When shared data is modified, larger CoW granularities better preserve locality but require more

data to be copied; smaller block sizes improve data sharing, but result in more fragmentation. BetrFS 0.5

implements CAW, rather than CoW, and, in this case, produces both lower space amplification and lower

grep times than other file systems.

it. We then select 8,192 random 4KiB-aligned offsets within the clone and write 16 bytes to each
offset, syncing data between writes. (Note that 8,192 represents one eighth of the total 4KiB blocks
in the clone.) At the conclusion of the test, we measure the total space usage of the system and
time to grep through the clone. Btrfs and XFS do not support block sizes larger than the media’s
physical sector size, so for these file systems, we use 4KiB blocks.

The results in Figure 9 support the hypothesis that CoW granularity induces an unfavorable
space/locality tradeoff. In our experiment, two file systems fall off the curve. XFS has an unusually
slow grep. BetrFS 0.5, which uses CAW rather than CoW, dominates the other file systems. BetrFS
0.5 has space amplification of 8× and a grep time of 4.3s. The next best space amplification is that of
XFS (243×), btrfs-svol (251×), and btrfs-reflink (256×). At least on this benchmark, CAW behaves
as expected, which is that it preserves locality yet induces much less space amplification than
CoW at any granularity. The second best grep time is that of ZFS 1MiB (6.6s), which is 53% higher
than BetrFS 0.5. Furthermore, the large CoW block size of 1MiB induces a space amplification
of over 2000× for this configuration. We note that BetrFS 0.5 is able to leverage write-optimized
batching and the Bε -tree message infrastructure to perform sub-block writes—each 16 byte update
is encoded as a ≈130 byte message that is batched and written as part of a large Bε -tree node.

The experiment exposes the Achilles heal of CoW, in which no write granularity supports both
small space amplification and low grep time. In the following, we evaluate all file systems across
a variety of micro- and application-benchmarks.
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5.2 Cloning Performance

In this section, we explore different logical copy implementations and determine which, if any,
meet the nimble clone performance goals. To this end, we wrote a microbenchmark that evaluates
the performance of cloning (and similar copy-on-write optimizations in other file systems), and
we performed the benchmark in three configurations. At a high level, the benchmark creates an
initial dataset, and then proceeds in rounds. In each round, a clone is created, a subset of the shared
data is modified, and a subset of the shared data is sequentially read.

Most CoW implementations create performance asymmetry. For instance, if one clones file A
to B, and then modifies B, standard copy-on-write implementations will often yield better read
performance for A than B—assuming that A was initially placed sequentially on disk—because B’s
modified blocks will be written out-of-place. To better understand these asymmetries, we measure
different patterns of cloning and modification.

We present three benchmark configurations, distinguished by (1) which data is cloned and
(2) which data is modified. Concretely, we begin by creating a directory hierarchy with eight di-
rectories, each containing eight 4MiB-files. Since the benchmark creates a sequence of clones, we
refer to the original dataset as the head, and we refer to the most recently created clone as the
tail. The benchmark then proceeds in rounds that modify either the head or the tail by writing 16
bytes to the same offset within each modified file. The benchmark then clones the head or the tail.
For the file systems that support only file-level clones (XFS and Btrfs without svol), the benchmark
makes a copy of the directory structure and clones the files. We then perform a recursive scan of
the modified data (using the Unix grep utility) and we measure the physical space usage of the
entire file system.

We evaluate each logical copy implementation under the following three configurations, de-
noted by a tuple of (version cloned, version modified). For instance, a configuration that clones
the head and modifies the tail is represented as (head, tail). We evaluate three representative
configurations:

— (head, tail), or “VM provisioning,” represents a scenario where a user creates writable
copies (e.g., provisions a virtual machine) of a read-only reference directory tree (e.g., a
pristine disk image).

— (head, head), or “versioning in-place,” represents a scenario where a user maintains multi-
ple point-in-time views of their file system, but only modifies the files in their working tree
(treating all clones as read-only snapshots).

— (tail, tail), or “chained versioning,” represents a scenario where a user maintains multiple
point-in-time views of their file system, but only modifies data in the most recent clone
(treating earlier clones as read-only snapshots).

The results are shown in Figure 10.

Are BetrFS 0.5 clones nimble? First, we consider whether BetrFS 0.5’s clones meet the nimble
goals. The time to create a clone is shown in the first row of Figure 10 (Figure 10(a)–(c)). BetrFS 0.5
clone time is roughly flat and under 0.25 seconds in all three configurations. In contrast, the cost of
Btrfs’s file-level cloning is roughly linear in the number of prior clones. XFS cloning latency also
increases as a function of the number of clones, but to a much smaller degree. ZFS clone times are
flat, although they are more expensive than BetrFS 0.5 clones. Since BetrFS 0.5 clones are both fast
insensitive to the number of previous clones, we have achieved our objective of cheap clones.

In terms of space usage (Figure 10(d)–(f)), BetrFS 0.5 displays two growth patterns. In the (head-
tail) configuration, BetrFS 0.5 shows a nearly flat line: adding 128 clones and modifying a total of
128KiB increases BetrFS 0.5’s overall space usage by 952KiB, or a space amplification of 7.4×. Since
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Fig. 10. Exploring the nimble clone properties: latency to clone, write, and read as a function of the number of

times that a directory tree has been cloned, as well as the cumulative space consumption. The benchmark is

performed in three configurations. The left column, denoted H-T, shows the configuration where the source

data is cloned, and the most recent clone is modified/read. In the center column, denoted H-H, the source

data is cloned, and the source data is modified/read. In the right column, denoted T-T, the most recent clone

is cloned and then modified/read. Lower is better for all measures.
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the original data is never modified, the only overheads in this configuration come from the update
messages that target the clone; message encoding costs include paths, transaction information,
and other small data structural book-keeping. In each (head-tail) round, BetrFS 0.5 space increases
by a fixed amount that is proportional to the update size.

In the (head-head) and (tail-tail) configurations, BetrFS 0.5 space amplification remains small,
but the growth is quadratic: after 128 clones and 128KiB of total writes, there is a 65MiB increase
in overall space, with approximately 1MiB growth occurring in the final benchmark round. This
quadratic blowup results from flushing all pending data to the Bε -tree LCA node and unsharing
those nodes; each round’s overheads are cumulative. Btrfs scaling is similar to BetrFS 0.5, but its
slope is slightly higher, indicating a higher space amplification for this workload than BetrFS 0.5.
XFS and ZFS show similar linear trends, although their slopes are different. XFS reserves consid-
erable space up-front, which raises the y-intercept on these graphs. ZFS’s slope is higher due to
its large default block size (128KiB), and these results are commensurate with Figure 9; ZFS trades
write amplification for locality.

In terms of subsequent writes (Figure 10(g)–(i)), the cost to write to a cloned file or directory is
roughly flat for BetrFS 0.5, XFS, and ZFS, although BetrFS 0.5 is consistently the fastest file system.
Subsequent writes to file-level clones in Btrfs degrade severely as a function of the number of
clones; after 120 clones, the subsequent write performance can be over 40× slower than the first
clone. Thus, we have not sacrificed the excellent small-write performance of BetrFS.

Finally, BetrFS 0.5 preserves good read locality—measured by grep time—as shown in
Figure 10(j)–(l). We see that locality has the most sensitivity to the benchmark configuration, as
discussed below. Here, we note that in the (head-tail) configuration (Figure 10(j)), nearly every
file system has flat performance, and Btrfs outperforms BetrFS 0.5 by 34% in the final benchmark
round. We believe this comes from their better sequential read performance, an orthogonal issue
to the clone operation. Note that (head-tail) is the best benchmark configuration for each file sys-
tem, since each round clones an unmodified, physically contiguous directory tree, and each round
introduces the same number of fragments to the fresh clone (one additional seek per file). Thus,
the grep time for all file systems is consistent across all rounds. In the (head, head) and (tail, tail)
benchmark configurations, however, other file system grep times degrade severely and linearly in
the number of clones, whereas BetrFS 0.5 remains flat. The degradation can be as high as 14× after
128 clones.

In total, these results indicate that BetrFS 0.5 supports a seemingly paradoxical combination of
performance features: clones are fast and space-efficient, and random writes are fast, yet preserve
good locality for sequential reads. No other file system in our benchmarks demonstrated this com-
bination of performance strengths, and some also showed significant performance declines with
each additional clone.

Sensitivity to clone and update patterns. In addition to evaluating the nimble clone properites,
we explore each file system’s overall sensitivity to clone and update patterns. We notice that the
key determinant of file system behavior is whether or not the same version of the data is cloned
and modified.

Btrfs clone and write latencies are particularly sensitive to update patterns: in the first column
of Figure 10, where the head is cloned and the tail is modified, Btrfs data fits within the bounds of
the graph. However, when the cloned data is modified (columns two and three), Btrfs data quickly
exceeds the graph’s view.

With the exception of BetrFS 0.5, we see that each file system’s grep times are sensitive:
Figure 10(j) shows flat grep times in the (head, tail) case, but Figure 10(k) and (l) show linear
degradation with the number of clones. As explained above, updating a CoW file introduces
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Fig. 11. Bandwidth to sequentially read and write a 10 GiB file (higher is better).

fragmentation, since all modified blocks must be written out of place—potentially far from their
logically contiguous blocks. In the (head, tail) configuration, the source data is never modified,
so its locality is preserved throughout all benchmark rounds. However, when the source data is
fragmented by each round’s updates, as is the case in the (head, head) and (tail, tail) configurations,
that fragmentation is passed on to the clone. This poor locality accumulates, and it introduces a
persistent tax on cloned data.

In summary, most file systems do indeed demonstrate an asymmetry in cloning performance,
and a comprehensive measurement needs to explore each of these cases to identify pathologies. It is
easy to conclude that worst-case performance is off by an order of magnitude without considering
which sequence of clones and modifications is most adversarial to a given implementation strategy.

5.3 General Filesystem Performance

This section examines a range of file system operations to determine whether the additional infras-
tructure needed to implement cloning erodes the performance advantages of write-optimization
in BetrFS. Our overarching goal is to build a file system that performs well on all operations, not
just clones; thus, we measure a wide range of microbenchmarks and application benchmarks.
Sequential IO. We measure the time to sequentially write a 10GiB file to disk (the benchmark-
ing machine has only 4GiB of RAM, so this is more than double the available RAM), and then
sequentially re-read the data from disk. Figure 11 shows the throughput of both operations. All
the filesystems perform sequential IO relatively well. BetrFS 0.5 performs sequential reads at com-
parable throughput to BetrFS, ZFS, and NILFS2, which is only about 19% less than ext4, Btrfs, and
XFS. Sequential writes in BetrFS 0.5 are within 6% to the fastest file system (Btrfs). We attribute
this improvement to preferential splitting, which creates a pivot matching the maximum file data
key at the beginning of the workload, avoiding expensive leaf relifting in subsequent node splits.
Random IO. We measure random write performance with a microbenchmark that issues 256K
4-byte overwrites at random offsets within a 10GiB file, followed by an fsync. This number of
overwrites was chosen to run for at least several seconds on the fastest filesystem. Similarly, we
measure random read performance by issuing 256K 4-byte reads at random offsets within an ex-
isting 10GiB file.

Table 1 shows the execution time of the random write and random read microbenchmarks.
BetrFS 0.5 performs these random writes 39–67× faster than conventional filesystems and 8.5%
slower than BetrFS. BetrFS 0.5 performs random reads 12% slower than the fastest file system.
Tokubench. We evaluate file creation using the Tokubench benchmark [18]. Tokubench creates
three million 200-byte files in a balanced directory tree (no directory is allowed to have more than
128 children). Figure 12 shows BetrFS 0.5 matches BetrFS throughput, which is strictly higher than
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Table 1. Time to Perform 256K 4-byte Random

Writes/Reads (1 MiB Total IO, Lower is Better)

FS random write (s) random read (s)
ext4 2770.6 ± 21.3 1947.9 ± 5.9
Btrfs 2069.1 ± 14.6 1907.5 ± 6.4
XFS 2863.4 ± 14.1 2023.3 ± 27.8
ZFS 3410.6 ± 937.4 2163.9 ± 112.2
NILFS2 2022.0 ± 4.8 1931.1 ± 26.6
BetrFS 4.7 ± 0.2 2201.1 ± 2.9
BetrFS 0.5 5.5 ± 0.1 2129.8 ± 6.8

Fig. 12. Cumulative file creation throughput during the Tokubench benchmark (higher is better).

Table 2. Time to Perform Recursive Grep, Find, and Delete of the Linux

3.11.10 Source Tree (Lower is Better)

FS find (s) grep (s) delete (s)
ext4 2.22 ± 0.0 37.71 ± 7.1 3.38 ± 2.2
Btrfs 1.03 ± 0.0 8.88 ± 0.3 2.88 ± 0.0
XFS 6.81 ± 0.2 57.79 ± 10.4 10.33 ± 1.4
ZFS 10.50 ± 0.2 38.64 ± 0.4 9.18 ± 0.1
NILFS2 6.72 ± 0.1 8.75 ± 0.2 9.41 ± 0.4
BetrFS 0.23 ± 0.0 3.71 ± 0.1 3.22 ± 0.4
BetrFS 0.5 0.21 ± 0.0 3.87 ± 0.0 3.37 ± 0.1

any other file system, (except for one point at the end where NILFS2 is 8.7% higher), and as much
as 95× higher throughput than ext4.
Directory Operations. Table 2 lists the execution time of three common directory operations—
grep, find, or delete—on the Linux 3.11.10 kernel source tree.
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Fig. 13. Application benchmarks.

BetrFS 0.5 is comparable to the baseline BetrFS on all of these operations, with some marginal
(4–5%) overhead on grep and delete from adding cloning. We also note that we observed a degra-
dation for BetrFS on larger directory deletions; the degradation is unrelated to cloning and we
leave investigation of this for future work. Overall, BetrFS 0.5 maintains the order-of-magnitude
improvement over the other file systems on find and grep.
Application Benchmarks. Figure 13 reports performance of the following application bench-
marks. We measure two BetrFS 0.5 variants: one with no clones in the file system (labeled BetrFS
0.5), and one executing in a cloned Linux-3.11.10 source directory (labeled BetrFS 0.5-clone).

The git clone workload reports the time to clone a local Linux source code repository, which
is cloned from github.com/torvalds/linux, and git diff reports the time to diff between the v4.14
and v4.7 tags. The tar workload measures the time to tar or un-tar the Linux-3.11.10 source.
The rsync workload copies the Linux-3.11.10 source tree from a source to a destination directory
within the same partition and file system. With the --in-place option, rsync writes data directly
to the destination file rather than creating a temporary file and updating via atomic rename. The
IMAP server workload initializes a Dovecot 2.2.13 mailserver with 10 folders, each containing 2,500
messages, then measures throughput of four threads, each performing 1,000 operations with 50%
reads and 50% updates (marks, moves, or deletes).
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Table 3. Latency of Cloning a Container

Back-end FS lxc-clone (s)
ext4 19.514 ± 1.214
Btrfs 14.822 ± 0.076
ZFS 16.194 ± 0.538

Dir XFS 55.104 ± 1.033
NILFS2 26.622 ± 0.396
BetrFS 0.5 8.818 ± 1.073

ZFS ZFS 0.478 ± 0.019
Btrfs Btrfs 0.396 ± 0.036
BetrFS 0.5 BetrFS 0.5-clone 0.118 ± 0.010

In most of these application benchmarks, BetrFS 0.5 is the highest performing file system, and
generally matches the other file systems in the worst cases. In a few cases, where the applica-
tion is write-intensive, such as git clone and rsync, BetrFS 0.5-clone degrades relative to BetrFS
0.5, attributable to the extra work of unsharing nodes, but the performance is still competitive
with, or better than, the baseline file systems. These application benchmarks demonstrate that ex-
tending write-optimization to include clones does not harm—and can improve—application-level
performance.

5.4 Cloning Containers

LXC is one of several popular container infrastructures that has adopted a number of storage
back-ends in order to optimize container creation. The default backend (dir) does an rsync of the
component directories into a single, chroot-style working directory. The ZFS and Btrfs back-ends
use subvolumes and clones to optimize this process. We wrote a BetrFS 0.5 backend using directory
cloning.

Table 3 shows the latency of cloning a default Ubuntu 14.04 container using each backend.
Interestingly, BetrFS 0.5 using clones is 3–4× faster than the other cloning backends, and up to
two orders of magnitude faster than the others.

6 RELATED WORK

File systems with snapshots. Many file systems implement a snapshot mechanism to make logi-
cal copies at whole-file-system-granularity [32]. Tree-based file systems, like WAFL [20], ZFS [46],
and Btrfs [34], implement fast snapshots by copying the root. WAFL FlexVols [17] add a level of
indirection between the file system and disks, supporting writable snapshots and multiple active
file system instances.

FFS [26] implements read-only file system views by creating snapshot inode with a pointer to
each disk block; the first time a block is modified, FFS copies the block to a new address and updates
the block pointer in the snapshot inode.

NILFS [24] is a log-structured file system that writes B-tree checkpoints as part of each logical
segment. NILFS can create a snapshot by making a checkpoint block permanent.

GCTree [16] implements snapshots on top of ext4 by creating chains of metadata block versions.
Each pointer in the metadata block has a “borrowed bit” to indicate whether the target block was
inherited from the previous version. Ext3cow [31] snapshots are defined by an epoch. Ext3cow
can render any epoch’s file-system view by fetching entries alive at that epoch. NOVA-Fortis [43]
supports snapshots by adding private logs to each inode.
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File or directory clones. AFS [21] introduced the idea of volumes as a granularity for cloning
and backup in a large, distributed file system; volumes isolate performance disruption from cloning
one user’s data from other users. Episode [11] can create immutable fileset clones by copying all
the fileset’s anodes (inodes) and marking all block pointers copy-on-write. Btrfs [34] can create file

clones by sharing a file’s extents. Windows® 2000 Single Instance Storage (SIS) [9] uses deduplica-
tion techniques to implement a new type of link that has copy semantics. Creating the first SIS link
requires a complete data copy to a shared store. Writes are implemented copy-on-close: once all
open references to an SIS link are closed, sharing is broken at whole-file granularity. Copy-on-close
optimizes for the case of complete overwrites.
Versioning file systems. Versioning files is an old idea, dating back to at least TENEX system [8].
Versioning file systems have appeared in a number of OSes [1, 27, 36], but often with limitations
such as a fixed number of versions per file and no directory versioning. The Elephant File Sys-
tem [35] automatically versions all files and directories, creating/finalizing a new file version when
the file is opened/closed. Each file has an inode log that tracks all versions. CVFS [37] suggests
journal-based metadata and multi-version B-trees as two ways to save space in versioning file sys-
tems. Versionfs [28] is a stackable versioning file system where all file versions are maintained as
different files in the underlying file system.

Exo-clones [38] were recently proposed as a file format for efficiently serializing, deserializing,
and transporting volume clones over a network. Exo-clones build upon an underlying file system’s
mechanism for implementing snapshots or versions. Nimble clones in BetrFS 0.5 have the potential
to make exo-clones faster and smaller than on a traditional copy-on-write snapshotting system.
Database indexes for dynamic hierarchical data. The closest work to ours in databases is the
BO-tree [19], a B-tree indexing scheme for hierarchical keys that supports moving key subtrees
from one place to another in the hierarchy. They even support moving internal nodes of the key
hierarchy, which we do not. However, they do not support clones—only moves—and their indexes
are not write optimized.

7 CONCLUSION

This article demonstrates how to use write-optimization to decouple writes from copies, rendering
a cloning implementation with the nimble performance properties: efficient clones, efficient reads,
efficient writes, and space efficiency. This technique does not harm performance of unrelated op-
erations and can unlock improvements for real applications. For instance, we demonstrate 3–4×
improvement in LXC container cloning time compared to optimized back-ends. The technique of
applying batched updates to the data structure itself is likely a generalizization. Moreover, our
cloning implementation in the Bε -DAG could be applied to any application built on a key-value
store, not just a file system.
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